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A small-deformation perturbation analysis is developed to study the effect of sur-
factant on drop dynamics in viscous flows. The surfactant is assumed to be insoluble
in the bulk-phase fluids; the viscosity ratio and surfactant elasticity parameters are
arbitrary. Under small-deformation conditions, the drop dynamics are described by a
system of ordinary differential equations; the governing equations are given explicitly
for the case of axisymmetric and two-dimensional imposed flows. Analytical results
accurate to third order in the flow-strength parameter (capillary number) are derived
(i) for the stationary drop shape and surfactant distribution in simple shear and
axisymmetric straining flows, and (ii) for the rheology of a dilute emulsion in shear
flow which include a shear-thinning viscosity and non-zero normal stresses. For drops
with clean interfaces, the small-deformation theory presented here improves the results
of Barthès-Biesel & Acrivos (J. Fluid Mech., vol. 61, 1973, p. 1). Boundary integral
simulations are used to test our theory and explore large-deformation conditions.

1. Introduction
Surface active agents (e.g. surfactants, compatibilizers, and proteins) are often

employed to control properties of emulsions and polymer blends; they are added to
stabilize the emulsions, to facilitate drop breakup, to prevent drop coalescence, etc.
(Lequeux 1998; Van Puyvelde, Velankar & Moldenaers 2001; Tucker & Moldenaers
2002; Fischer & Erni 2007). Quantitative understanding of the effect of surfactants on
drop dynamics represents a challenging problem because drop shape and surfactant
distribution at the interface are not given a priori but are determined by the balance
between interfacial and fluid stresses.

In the absence of surfactants, drop deformation is governed solely by the isotropic
surface tension, which acts to keep the drop spherical (Rallison 1984; Stone 1994).
In the presence of surfactants, surface tension is reduced and may become non-
uniform. Experimental studies have revealed an intricate interplay between shape
deformation, surfactant redistribution on drop interface and bulk flows (Stone &
Leal 1990; Velankar et al. 2001; Hu & Lips 2003; Jeon & Macosko 2003; Velankar
et al. 2004a, b). For example, in linear flows (see figure 1), fluid motion elongates the
drop and sweeps the surfactant towards the drop ends. The accumulation of surfactant
at the tips decreases the surface tension. As a result, the curvature increases as needed
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Figure 1. Illustration of a surfactant-covered drop in a simple-shear flow.

to maintain the normal stress balance. The increase of interfacial area accompanying
drop deformation leads to dilution of overall surfactant concentration and increase
of surface tension. The non-uniform surfactant distribution gives rise to gradients
of the surface tension (Marangoni stresses). Tip-stretching, dilution and Marangoni
stresses have been studied extensively for axisymmetric flows and two-dimensional
drops, mainly by means of numerical simulations (Stone & Leal 1990; Milliken, Stone
& Leal 1993; Eggleton, Pawar & Stebe 1998; Eggleton, Tsai & Stebe 2001; James &
Lowengrub 2004; Lee & Pozrikidis 2006; Xu et al. 2006; Muradoglu & Tryggvason
2008), although recently analytical results for a highly deformed bubble have been
obtained using slender-body theory (Booty & Siegel 2005).

In shear flows, the rotational flow component rotates the drop away from the
extensional axis and continuously redistributes the surfactant, thereby decreasing the
non-uniformities and shape distortion. The effect of rotation becomes increasingly
important as the viscosity contrast increases. Three-dimensional simulations have
been developed to explore the dynamics of surfactant-covered drops in shear flows
(Li & Pozrikidis 1997; Yon & Pozrikidis 1998; Bazhlekov, Anderson & Meijer 2004;
Pozrikidis 2004; Vlahovska, B�lawzdziewicz & Loewenberg 2005; Bazhlekov, Anderson
& Meijer 2006; Feigl et al. 2007). However, with exception of Bazhlekov et al. (2006),
these studies are limited to equiviscous drop and suspending fluids because simulations
of high-viscosity drops are computationally expensive.

Since high-viscosity drops deform little in shear flow, analytical theories based
on perturbation analyses for small deviations from sphericity provide an attractive
alternative to the costly numerical simulations. Most work has been focused on
surfactant-free drops, where expansions for up to third order in shape deformation
have been derived (Taylor 1934; Cox 1969; Frankel & Acrivos 1970; Barthès-Biesel
& Acrivos 1973a; Greco 2002). Rallison (1980) provides a clear summary of the
expansions based on different small parameters (e.g. capillary number, viscosity ratio).

Similar analyses of surfactant-covered drops are at an earlier stage. A leading-order
perturbation theory, which includes surface shear and dilatational viscosities as well as
mass transfer from the bulk was developed by Flumerfelt (1980). Stone & Leal (1990)
also considered the near-sphere limit analytically and included surface diffusion in
their analysis. These theories describe the drop deformation to leading order but are
insufficient for predicting the non-Newtonian emulsion rheology. A solution beyond
the leading linear order is a difficult task because it requires evaluation of boundary
conditions, e.g. matching inner and outer velocities or stresses, on the interface of the
deformed drop. This problem can be circumvented for the special case of a drop with
the same viscosity as the suspending fluid. For this problem, the fluid velocity field can
be computed directly from the interfacial stresses using the integral representation of
the Stokes flow solution (Kim & Karrila 1991; Pozrikidis 1992). We have developed
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a third-order perturbation solution for the equiviscous drop (Vlahovska et al. 2005)
and derived explicit results for the stationary drop shape, surfactant distribution and
effective stresses of a dilute emulsion of deformable surfactant-covered drops.

The present work addresses the general case of a drop with arbitrary viscosity
contrast. In order to derive an analytical solution for small drop deformation,
we develop a perturbation formalism capable of treating the matching process at
the deformed interface. The paper is organized as follows. Section 2 presents the
formulation of the problem, while § 3 outlines the general idea of the perturbation
solution. Section 4 provides details of the solution; a reader more interested in the
applications may skip this rather technical part. Section 5 presents the second-order
evolution equations for the shape and surfactant distribution in linear flows as well
as the effective stress of a dilute emulsion. Sections 6 and 7 provide the weak-flow
expansions for the stationary shape, surfactant distribution and emulsion effective
stresses for two common types of flow: axisymmetric extensional and a simple-shear
flows; we compare the results from our third-order small-deformation theory with
boundary integral simulations. The combined analytical and numerical study leads to
an improved quantitative description of the effects of surfactant on drop dynamics. In
§ 8, we give the complete third-order shape-evolution equations for a surfactant-free
drop, and we present the relation between our analysis and that of Barthès-Biesel &
Acrivos (1973a).

2. Problem statement
Consider an initially spherical, neutrally buoyant drop with equilibrium radius a

and viscosity ηin suspended in an unbounded fluid with viscosity ηout . A monolayer
of insoluble surfactant is adsorbed on the drop interface. At rest, the surfactant
distribution is uniform and the equilibrium surfactant concentration is Γeq ; the
corresponding interfacial tension is σeq . The coordinate system employed is spherical
(r, θ, φ), with the origin coinciding with the centre of mass of the drop. The drop is
placed in a linear flow

u∞(r) = γ̇E · r, (2.1)

where γ̇ is the strain rate. E is a traceless constant tensor, which characterizes the
velocity gradient

E = 1
2

⎛
⎝ 0 1 + β 0

1 − β 0 0

0 0 0

⎞
⎠ (2.2)

and β is the rotational component of the flow. Simple-shear flow is given by β = 1.
Hereafter, the surfactant concentration is normalized by Γeq ; all other quantities

are rescaled using ηout , a and γ̇ . Accordingly, the timescale is γ̇ −1, the velocity scale
is γ̇ a, bulk viscous stresses are scaled with ηout γ̇ and the scale for interfacial tension
is σeq .

2.1. Governing equations

In the creeping flow limit, the fluid motion inside and outside the drop obeys the
Stokes equations

∇ · T = 0, ∇ · u = 0, (2.3)

where the bulk hydrodynamic stresses are

Tout = −pout I + [∇uout + (∇uout )T ], (2.4a)
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Tin = −pin I + (χ − 1)[∇uin + (∇uin)T ], (2.4b)

u denotes the velocity and p is the pressure.
The viscosity contrast is characterized by

χ = 1 +
ηin

ηout
. (2.5)

Since this parameter is always greater than unity, its inverse is well defined. Thus, it
can serve as a small parameter for a perturbation analysis of highly viscous drops.
In the case of a spherical surfactant-covered drop, χ−1 provided expansion that was
converging much faster than the one based on the usual inverse viscosity ratio ηout/ηin

(B�lawzdziewicz, Vlahovska & Loewenberg 2000).
Far from the drop, the flow tends to the undisturbed external flow,

uout → u∞ as r → ∞. (2.6)

Fluid velocity is continuous across the drop interface

uout = uin at r = rs, (2.7)

where rs denotes the position of the interface. Drop interface moves with the fluid
velocity, i.e.

∂H

∂t
+ u · ∇H = 0 r = rs, (2.8)

where H = r − rs represents the interface as the set of points r, where H (r, t) ≡ 0.
The shape function H defines the outward pointing unit normal to the drop interface

n =
∇H

|∇H | . (2.9)

The evolution of the distribution of an insoluble, non-diffusing surfactant is governed
by a time-dependent convective (Stone 1990; Wong, Rumschitzki & Maldarelli 1996)

∂Γ

∂t
+ ∇s · (usΓ ) + Γ (u · n)∇s · n = 0 at r = rs, (2.10)

where ∇s is the surface gradient operator, ∇s = (I − nn) · ∇.
The jump of the hydrodynamic tractions across the drop interface is balanced by

the interfacial stresses

n · Tout − n · Tin = t. (2.11)

Interfacial stresses arise from non-uniform curvature and gradients in surface tension

t = Ca−1(σ n∇s · n) − Ma∇sσ, (2.12)

where ∇s · n is the local mean curvature. The capillary number, defined as

Ca =
ηoutaγ̇

σeq

, (2.13)

reflects the relative strength of the distorting viscous and restoring surface-tension
forces. Likewise,

Ma−1 =
ηoutaγ̇

�σ
, (2.14)
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reflects the relative strength of the distorting viscous and restoring Marangoni stresses.

�σ = −Γeq

(
∂σ

∂Γ

)
Γ =Γeq

is the characteristic magnitude of the surface-tension variations that result from per-
turbations of the local surfactant concentration Γ about the equilibrium value Γeq .

The dependence of the surface tension on the local surfactant concentration is
generally nonlinear (Pawar & Stebe 1996; Eggleton et al. 1998). However, for small
perturbations around equilibrium or dilute concentrations, the equation of state can
be linearized

σ (Γ ) = 1 − E (Γ − 1). (2.15)

The elasticity number is given by

E =
�σ

σeq

= CaMa. (2.16)

In this study, we choose Ca as the dimensionless strain rate to define the flow. The
elasticity, E, and the viscosity contrast, χ , are flow-independent material parameters
characterizing the surfactant monolayer and the fluids. Our previous work focused
on the effect of surfactant elasticity at fixed viscosity contrast (Vlahovska et al. 2005).
In this paper, we explore the effects of the viscosity contrast at a given surfactant
elasticity.

2.2. Effective rheological properties

In the linear flow (2.1), the effective stress of a dilute emulsion with volume fraction
φ is given by

Σ = 2Es + φTd , (2.17)

where Es denotes the symmetric part of the velocity gradient tensor (2.2) and Td is
the drop contribution. The emulsion shear rheology is fully characterized by the shear
viscosity Σxy and normal stress differences N1 = T d

xx − T d
yy and N2 = T d

yy − T d
xx .

The zero-shear rate limit of the viscosity of a dilute emulsion of surfactant-
covered drops is given by Einstein’s result for suspension of hard spheres, T d

12 = 5/2
(B�lawzdziewicz et al. 2000). At finite shear rates, drop deformation and Marangoni
stresses give rise to shear thinning and normal stresses.

3. Small-deformation analysis
In a reference frame with the drop centre at r = 0, the position of the drop interface

is specified by

rs = α + f (Ω) , (3.1)

where f is the deviation of the drop shape from a sphere, which depends only on the
solid angle Ω and has a vanishing angular average∫

f dΩ = 0. (3.2)

The isotropic contribution α is determined by the constraint for constant drop volume∫
(α + f )3 dΩ = 4π. (3.3)
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The evolution of interface (2.8) in terms of the shape perturbation f becomes

∂f

∂t
= u · (r̂ − ∇f ) r = rs. (3.4)

The evaluation of the surfactant conservation equation (2.10) on a deforming interface
represents a complicated problem because of the surface divergence operator.
However, if the surfactant distribution is projected onto a sphere, Γ̃ = Γ r2

s /n · r̂
(Vlahovska et al. 2005), the surfactant conservation simplifies because the surface
divergence is evaluated on a sphere. Similar to (3.1), the projected surfactant
distribution can be represented as

Γ̃ = 1 + g, (3.5)

where g denotes the local, flow-induced variation of surfactant concentration. Thus
the evolution (2.10) takes the form

∂g

∂t
= −∇̃ · [ũ(1 + g)], (3.6)

where ũ is the tangential angular velocity

ũ = r−1
s (I − r̂ r̂) · u r = rs. (3.7)

For small deviations from equilibrium characterized by some relevant parameter
ε we seek to obtain evolution equations for the shape (3.4) and the surfactant
concentration (3.6) as third-order regular perturbation expansions in the small
parameter ε

∂f

∂t
=

3∑
p=0

εpFp(f, g),
∂g

∂t
=

3∑
p=0

εpGp(f, g). (3.8)

In creeping flows and moderate viscosity ratios, drop shape remains close to spherical
provided that the capillary number is small. In this work, we focus on this weak-flow
limit, i.e. ε = Ca . If E ∼ O(1) surfactant distribution remains nearly uniform, and the
perturbation in the surfactant concentration around its equilibrium distribution also
scales as ε. In shear flows, high-viscosity contrast between the drop and suspending
fluids limits the shape and surfactant distortion because of the increased rate of drop
rotation. Thus, another choice for the small parameter is the viscosity contrast, χ−1;
the results of this analysis will be presented in a forthcoming paper.

The spherical geometry of the problem suggests to expand the position of drop
interface and surfactant concentration in scalar spherical harmonics (A 1)

f =

∞∑
j=2

j∑
m=−j

fjmYjm, g =

∞∑
j=2

j∑
m=−j

gjmYjm. (3.9)

In the following section, we present details of our solution. The reader more interested
in the final results than the technical details may proceed directly to § 5, where the
evolution equations for the drop-shape deformation and emulsion-effective stress are
listed.

4. Solution
4.1. Evaluation of quantities at the deformed interface: general formalism

Similar to the shape and surfactant concentration (3.9), all quantities are represented
as perturbation expansions in the small parameter ε, e.g. the velocity and stress fields
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are

u (r) =

3∑
p=0

εpup (r) , T (r) =

3∑
p=0

εpTp (r) . (4.1)

Solving the hydrodynamic problem requires evaluation of the boundary conditions for
the velocity continuity (2.7) and stress balance (2.11) at the interface of the deformed
drop. For small deviations of the drop shape from a sphere, all quantities that are to
be evaluated at the deformed shape interface are approximated in terms of equivalent
quantities on a sphere using a Taylor series expansion around r = 1 for ε � 1.

We first proceed to obtain the surface velocity. The combination of (4.1) with the
Taylor series expansion for the velocity fields yields

u(r = rs ) =
∑

εp ūp (Ω) , (4.2)

where

ūp (Ω) =

p∑
n=0

f n

n!

dnup−n(r)

d rn

∣∣∣∣
r=1

. (4.3)

The continuity of velocity (2.7) must hold term by term

ūin
p (Ω) = ūout

p (Ω) + u∞
p (Ω) , (4.4)

where u∞
p (Ω) denotes the Taylor series expansion of the external flow velocity (2.1).

Note that for linear flows (2.1), u∞ (r) is linear in r and, therefore, the terms u∞
p of

order p � 2 vanish.
The hydrodynamic tractions at the deformed interface,

τ (r s) = n · T (r s) , (4.5)

are expanded as

τ (r s) =

3∑
p=0

εpτp (Ω) . (4.6)

The expansion terms

τp (Ω) = r̂ · T̄p +

p∑
k=1

np−k · T̄k (4.7)

are obtained by combining the normal vector expansion

n (Ω) = r̂ +

3∑
p=1

εpnp (Ω) (4.8)

with the stresses expansion (4.1). T̄n (Ω) denotes the nth term in the Taylor series for
the stresses (defined analogously to the surface velocity (4.2), (4.3)). The stress jump
condition (2.11) must hold at any perturbation order, hence

τ out
p (Ω) − (χ − 1)τ in

p (Ω) = tp(Ω), (4.9)

where tp is the corresponding term from the interfacial stress expansion

t =

3∑
p=0

εp(Ca)−1 tcap
p + Ma tmar

p . (4.10)
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At each perturbation level, we apply (4.4), (4.9) to solve for the velocity field in terms
of shape, f , and surfactant distribution, g. Then we determine f and g using the
evolution (3.4) and (3.6).

4.2. Expansions in spherical harmonics

Spherical harmonics are used to represent not only the shape and surfactant
distribution but also velocity and stress fields. This formalism, in particular the
use of scalar and vector spherical harmonics, has already been presented in several
papers (B�lawzdziewicz et al. 2000; Vlahovska et al. 2005). In this section, we outline
the basics and give more details about the new features related to the representation
of stresses with tensor spherical harmonics.

Vector quantities such as the interfacial stress (4.10) and the normal vector (4.8)
are expanded in vector spherical harmonics yjmq (Ω) (B 1):

tp =
∑
jmq

tjmq,p ( f , g) yjmq, np =
∑
jmq

njmq,p ( f , g) yjmq, (4.11)

where f and g denote the sets of shape and surfactant parameters

f ≡ {fjm} , g ≡ {gjm} (4.12)

and ∑
jmq

≡
∞∑

j=2

j∑
m=−j

2∑
q=0

. (4.13)

Velocity and stress fields are described using a basis of fundamental solutions of the
Stokes equations (Cichocki, Felderhof & Schmitz 1988). The velocity basis functions
are

u±
jmq (r) =

2∑
q ′=0

U
±
q ′q (j ; r) yjmq ′, (4.14)

where Uq ′q (j ; r) can be found in B�lawzdziewicz et al. (2000). There is a stress tensor

field associated with each u±
jmq:

T±
jmq (r) = −p

±
jmq I + ∇′u±

jmq, (4.15)

where the pressure is given by (B�lawzdziewicz et al. 2000)

p
±
jmq (r) = P ±

q (j ; r) Yjm, (4.16)

and the rate-of-strain tensor is expanded in tensor spherical harmonics Yjmq (B 2)

∇′u±
jmq =

2∑
q ′=−2

U±
qq ′ (j ; r) Yjmq ′ . (4.17)

The matrices Uqq ′ (j ; r) are listed in Appendix B.2.
In the basis of functions (4.14), the velocity fields are represented as

uout (r) = u∞ +
∑
jmq

c−
jmq u−

jmq (r) , uin (r) =
∑
jmq

c+
jmq u+

jmq (r) . (4.18)

The corresponding stress fields are

Tout (r) = E +
∑
jmq

c−
jmqT

−
jmq (r) , Tin (r) =

∑
jmq

c+
jmqT

+
jmq (r) . (4.19)
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The external flow and stress are specified by

u∞ (r) =
∑
jmq

c∞
jmq u+

jmq (r) , E =
∑
jmq

c∞
jmqT

+
jmq (r) . (4.20)

Following the perturbation scheme (4.1), the coefficients are expanded as

c
±
jmq =

∞∑
p=0

εpc
±
jmq,p ( f , g, Ca, χ, E) . (4.21)

Hereafter, we adopt the notation that summation over repeated indices is implied.

4.3. Matrix representation of the boundary conditions at the deformed interface

The spherical harmonics representation transforms the boundary conditions for the
velocity (4.4) and stresses (4.9) into a matrix form. The perturbation problem reduces
to solving a hierarchy of the matrix equations, which we have done using the software
for symbolic computations Mathematica. The calculations up to (and including) order
p = 3 were performed. However, owing to its hierarchical structure, the solution, in
principle, can be extended to higher orders.

4.3.1. Velocity

Introducing representations (4.18) and (4.14) in the expression for the surface
velocity (4.3) leads to

ūν
p (Ω) =

p∑
k=0

c
±
jmq,p−kU

±,(k)
qq1

(j ; r = 1) yjmq1
ν = in, out, (4.22)

where U±,(k) denotes the kth term in the Taylor series for the U±
qq1

(j ; r) (defined
analogous to (4.3)). After some algebra, details of which are given in Appendix C.1,
we obtain

ūν
p (Ω) =

p∑
k=0

c
±
jmq,p−kD

±
jmqj2m2q2,k

( f ) yj2m2q2
ν = in, out. (4.23)

The matrix Djmqj2m2q2,k (C 5) is diagonal at k = 0:

Djmqj2m2q2,0 = δj j2
δmm2

δq q2
, (4.24)

where δnm denotes the Kronecker delta function. Thus, according to (4.24) and (4.23),
the velocity continuity condition (4.4) can be rewritten as a relation between the
velocity coefficients inside and outside the drop

c+
jmq,p = c−

jmq,p + vjmq,p, (4.25)

where the term vjmq,p is defined to absorb all contributions from the lower order
(k < p) perturbations

vjmq,p = c∞
j ′m′q ′D+

j ′m′q ′jmq,p ( f )

+

p∑
k=1

(
c−
j ′m′q ′,p−kD

−
j ′m′q ′jmq,k ( f ) − c+

j ′m′q ′,p−kD
+
j ′m′q ′jmq,k ( f )

)
. (4.26)

Equation (4.25) illustrates the recursive structure of the perturbation solution.
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4.3.2. Hydrodynamic tractions

Similar analysis of the hydrodynamic tractions leads to an equation analogous to
(4.23). The surface tractions (4.7) are cast into the form

τ ν
p (Ω) =

p∑
k=0

c
±
jmq,p−kΘ

±
jmqj2m2q2,k

( f ) yj2m2q2
. (4.27)

The traction matrices Θ±
k are discussed in Appendix C.2, where the explicit expressions

for the perturbation order k = 1 are listed. For k = 0, the traction matrix reduces to

Θ
±
jmqj2m2q2,0

= δjj2
δmm2

Θ±
qq2

(j ) , (4.28)

where Θ±
qq2

is given by (C 12). The stress jump condition (4.9) is rewritten in a matrix
form as

c−
jmq ′,pΘ−

q ′q (j ) − (χ − 1)c+
jmq ′,pΘ+

q ′q (j ) = xjmq,p, (4.29)

where the contributions from the lower order solutions as well as the interfacial
stresses and tractions due to the external flow are combined in

xjmq,p =

p∑
k=1

(
c−
j ′m′q ′,p−kΘ

−
j ′m′q ′jmq,k ( f ) − c+

j ′m′q ′,p−kΘ
+
j ′m′q ′jmq,k ( f )

)
− δj2δp0τ

∞
jmq + tjmq,p ( f , g) . (4.30)

The last term in (4.30) is the interfacial stress expansion term tjmq,p from (4.11). The
tractions associated with the external flow (2.1) are τ∞

jmq .

4.4. Problem solution: recurrence relations

The solution at the perturbation order p is given by a recurrence relation involving
the solutions at lower perturbation orders.

4.4.1. Velocity and stress fields

The velocity and stress boundary conditions (4.25), (4.29) represent a set of linear
equations for the velocity expansion coefficients c+

jmq,k and c−
jmq,k . Eliminating c+

jmq,k

from these equations yields the solution for the velocity coefficients of the flow field
outside the drop

c−
jmq,p = zjmq ′,pΥq ′q, (4.31)

where

zjmq ′,p = xjmq ′,p − (χ − 1)vjmq,pΘ+
qq ′ (j ) (4.32)

and

Υq ′q =
[
Θ−

q ′q − (χ − 1)Θ+
q ′q

]−1
. (4.33)

Υ is defined in Appendix C.3. Explicit expressions for the velocity coefficients at
perturbation orders 0 and 1 are listed in Appendix D. The expressions for orders 2
and 3 are very lengthy; they can be found in Vlahovska (2003).

The components of effective stress Td (2.17) are directly related to the velocity
coefficients c−

2±2q (Vlahovska et al. 2005).
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4.4.2. Shape- and surfactant-evolution equations

The shape- and surfactant-evolution (3.8) in spherical harmonics representation
(3.9) take the form

ḟ jm =

∞∑
p=0

εpFjm,p, ġjm =

∞∑
p=0

εpGjm,p, (4.34)

where the dot denotes the time derivative and we have introduced

Fp = Fjm,pYjm, Gp = Gjm,pYjm. (4.35)

After some algebra outlined in Appendix C.4, we find

Fjm,p = c
±
jm2,p + w

±,F
jm,p (4.36)

and, similarly,

Gjm,p = [j (j + 1)]1/2
(
c

±
jm0,p + w

±,Γ
jm,p

)
. (4.37)

In the above expressions, the use of outer c− or inner c+ velocity coefficients yields the
same results (this served as a useful check). The terms w

±
jm,p absorb all contributions

from the lower order perturbations,

w
±,F
jm,p =

p∑
k=1

c
±
j ′m′q ′,p−kW

±,F
j ′m′q ′jm,k( f ), (4.38)

and

w
±,Γ
jm,p =

p∑
k=1

c
±
j ′m′q ′,p−kW

±,Γ
j ′m′q ′jm,k( f , g), (4.39)

where the matrix W±,F
j ′m′q ′jm,k is given by (C 29) and W±,Γ

j ′m′q ′jm,k is given by (C 33). Details
about its derivation can be found in Vlahovska (2003). Explicit expressions for the
evolution coefficients of perturbation orders 0 and 1 are listed in Appendix D; again,
orders 2 and 3 are very lengthy and can be found in Vlahovska (2003).

Thus far, we have presented the solution in a general form valid for any type of
external flow. In the following sections, we give explicit results for linear flows.

5. Evolution equations
Here we list the explicit expressions for the second-order O(Ca−1ε3, Maε3) evolution

equations or shape, surfactant and effective emulsion stresses in linear flows. The
third-order expressions are very lengthy; the complete set can be downloaded from
Vlahovska (2007). The hyperbolic flow (x, −y, 0) does not belong to the family of
linear flows described by (2.2). However, it corresponds to the straining flow, β = 0,
with the flow axes rotated by π/4.

Let us split fjm and gjm into real and imaginary parts

fj±m = f ′
jm ± if ′′

jm gj±m = g′
jm ± ig′′

jm. (5.1)

For m = 0, the shape and surfactant parameters are real. In simple-shear flow, f ′
22,

f ′′
22 and f20 correspond to drop deformation along the flow direction (x-axis), the

straining axis x = y and the vorticity direction (z-axis), respectively. Let us introduce
the capillary number based on the surface tension of the surfactant-free interface

Ca0 = Ca(1 + E)−1. (5.2)
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This would allow us to take the surfactant-free limit of our theory, Ma = 0. The
evolution equations are

ḟ 20 = 2d11f
′′
22 + d12f20f

′′
22 + d13f

′′
42

+ Ca−1
0

[
D1f20 + D2

(
−f 2

20 + 2f ′2
22 + 2f ′′2

22

)]
+ Ma

[
D12f20 + D13g20 + D21

(
−f 2

20 + 2f ′2
22 + 2f ′′2

22

)
+ D22

(
−f20g20 + 2f ′

22g
′
22 + 2f ′′

22g
′′
22

)]
(5.3a)

ḟ ′
22 = −2ωf ′′

22 + d21f
′
22f

′′
22 + d22f

′′
44 + Ca−1

0

[
D1f

′
22 + 2D2f20f

′
22

]
+ Ma

[
D12f

′
22 + D13g

′
22 + 2D21f20f

′
22 + D22

(
f20g

′
22 + g20f

′
22

)]
(5.3b)

ḟ ′′
22 = 2ωf ′

22 +
[
d31 + d11f20 + d32f

2
20 + d33f

′2
22 + d34f

′′2
22 + d36f

′
40 + d37f

′
44

]
+ Ca−1

0

[
D1f

′′
22 + 2D2f20f

′′
22

]
+ Ma

[
D12f

′′
22 + D13g

′′
22

+ 2D21f20f
′′
22 + D22(f20g

′′
22 + g20f

′′
22)
]

(5.3c)

ġ20 = 2b11f
′′
22 + 2b12g

′′
22 + b13f20f

′′
22 − 2b14

(
f20g

′′
22 − g20f

′′
22

)
+ b15f

′′
42

+ b16g
′′
42 + Ca−1

0

[
−2D12f20 + B2

(
−f 2

20 + 2f ′2
22 + 2f ′′2

22

)
+ B21

(
−f20g20 + 2f ′

22g
′
22 + 2f ′′

22g
′′
22

)]
+ Ma

[
B12f20 + B13g20 + B22

(
−f 2

20 + 2f ′2
22 + 2f ′′2

22

)
+ B23

(
−f20g20 + 2f ′

22g
′
22 + 2f ′′

22g
′′
22

)
+ B24

(
−g2

20 + 2g′2
22 + 2g′′2

22

)]
(5.3d)

ġ′
22 = −2ωg′′

22 + b21f
′
22f

′′
22 − 2b14f

′′
22g

′
22 + b22f

′
22g

′′
22 + b17f

′′
44 + b18g

′′
44

+ Ca−1
0

[
−2D12f

′
22 + 2B2f20f

′
22 + B21

(
f20g

′
22 + f ′

22g20

)]
+ Ma

[
B12f

′
22 + B13g

′
22 + 2B22f20f

′
22 + B23

(
f20g

′
22 + g20f

′
22

)
+ 2B24g20g

′
22

]
(5.3e)

ġ′′
22 = 2ωg′

22 +
[
3d31 + b11f20 + b32f

2
20 + b33f

′2
22 + b34f

′′2
22

+ b12g20 − b14f20g20 − b22f
′
22g

′
22 − 2b14f

′′
22g

′′
22 + b19f40 + b20g40

− b17f
′
44 − b18g

′
44

]
+ Ca−1

0

[
−2D12f

′′
22 + 2B2f20f

′′
22

+ B21

(
f20g

′′
22 + f ′′

22g20

)]
+ Ma

[
B12f

′′
22 + B13g

′′
22 + 2B22f20f

′′
22

+ B23

(
f20g

′′
22 + g20f

′′
22

)
+ 2B24g20g

′′
22

]
(5.3f)

ḟ 40 = d41f
′′
22 + d42f20f

′′
22 + d43f

′′
42 + Ca−1

0

[
D3f40 + D4

(
3f 2

20 + f ′2
22 + f ′′2

22

)]
+ Ma

[
P12f40 + P13g40 + P21

(
3f 2

20 + f ′2
22 + f ′′2

22

)]
+ P22(3f20g20 + f ′

22g
′
22 + f ′′

22g
′′
22)] (5.3g)

ḟ ′
42 = −βf ′′

42 + d51f
′
22f

′′
22 + d52f

′′
44 + Ca−1

0 [D3f
′
42 + D41f20f

′
22]

+ Ma[P12f
′
42 + P13g

′
42 + P31f20f

′
22 + P32(f20g

′
22 + g20f

′
22)] (5.3h)

ḟ ′′
42 = βf ′

42 + d61f20 + d62f
2
20 + d63f

′2
22 + d64f

′′2
22 + d65f40 − d52f

′
44

+ Ca−1
0 [D3f

′′
42 + D41f20f

′′
22] + Ma[P12f

′′
42 + P13g

′′
42

+ P31f20f
′′
22 + P32(f20g

′′
22 + g20f

′′
22)] (5.3i)
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ḟ ′
44 = −2βf ′′

44 + d71f
′′
22 + d72f20f

′′
22 + d73f

′′
42 + Ca−1

0

[
D3f

′
44 + D42

(
f ′2

22 − f ′′2
22

)]
+ Ma

[
P12f

′
44 + P13g

′
44 + P41

(
f ′2

22 − f ′′2
22

)
+ P42(f

′
22g

′
22 − f ′′

22g
′′
22)
]

(5.3j)

ḟ ′′
44 = 2βf ′

44 − d71f
′
22 − d72f20f

′
22 − d73f

′
42 + Ca−1

0 [D3f
′′
44 + 2D42f

′
22f

′′
22]

+ Ma[P12f
′′
44 + P13g

′′
44 + 2P41f

′
22f

′′
22 + P42(f

′
22g

′′
22 + f ′′

22g
′
22)] (5.3k)

ġ40 = q1g
′′
22 + q2g

′′
42 + q3f

′′
42 + q10f20f

′′
22 + q11(f20g

′′
22 − f ′′

22g20)

+ Ca−1
0

[
Q1f40 + Q2

(
3f 2

20 + f ′2
22 + f ′′2

22

)
+ Q22(3f20g20 + f ′

22g
′
22 + f ′′

22g
′′
22)
]

+ Ma
[
Q12f40 + Q13g40 + Q21

(
3f 2

20 + f ′2
22 + f ′′2

22

)
+ Q23(3f20g20 + f ′

22g
′
22 + f ′′

22g
′′
22) + Q24

(
3g2

20 + g′2
22 + g′′2

22

)]
(5.3l)

ġ′
42 = −βg′′

42 + q4g
′′
44 + q5f

′′
44 + q12f

′
22f

′′
22 + q13f

′′
22g

′
22

+ Ca−1
0 [Q1f

′
42 + Q3f20f

′
22 + Q32(f20g

′
22 + g20f

′
22)] + Ma[Q12f

′
42

+ Q13g
′
42 + Q31f20f

′
22 + Q33(f20g

′
22 + g20f

′
22) + Q34g20g

′
22] (5.3m)

ġ′′
42 = βg′

42 − q4g
′
44 − q5f

′
44 + q6f40 + q7g20 + q8g40 + q14f

2
20 + q15f

′2
22

+ q16f
′′2
22 + q17(f

′′
22g

′′
22 + 1

2
f20g20) + Ca−1

0 [Q1f
′′
42 + Q3f20f

′′
22

+ Q32(f20g
′′
22 + g20f

′′
22)] + Ma[Q12f

′′
42 + Q13g

′′
42 + Q31f20f

′′
22

+ Q33(f20g
′′
22 + g20f

′′
22) + Q34g20g

′′
22] (5.3n)

ġ′
44 = −2βg′′

44 − q5f
′′
42 + q9g

′′
22 − q4g

′′
42 + q18f20f

′′
22 + q19f20g

′′
22

+ Ca−1
0

[
Q1f

′
44 + Q4

(
f ′2

22 − f ′′2
22

)
+ Q42(f

′
22g

′
22 − f ′′

22g
′′
22)
]

+ Ma
[
Q12f

′
44 + Q13g

′
44 + Q41

(
f ′2

22 − f ′′2
22

)
+ Q43(f

′
22g

′
22 − f ′′

22g
′′
22)

+ Q44

(
g′2

22 − g′′2
22

)]
(5.3o)

ġ′′
44 = 2βg′

44 + q5f
′
42 − q9g

′
22 + q4g

′
42 − q18f20f

′
22 − q19f20g

′
22

+ Ca−1
0 [Q1f

′′
44 + 2Q4f

′
22f

′′
22 + Q42(f

′
22g

′′
22 + f ′′

22g
′
22)]

+ Ma[Q12f
′′
44 + Q13g

′′
44 + 2Q41f

′
22f

′′
22 + Q43(f

′
22g

′′
22 + f ′′

22g
′
22)

+ 2Q44g
′
22g

′′
22]. (5.3p)

In the equations above,

ω =
β

2
− f ′

22c1 (5.4)

is the angular velocity of a rigid body of the shape f in the external flow u∞ and c1 is a
constant. The rigid-body rotation produced by the rotational flow component is given
by β; β = 1 corresponds to a simple-shear flow. The remaining term represents the
rigid-body rotation produced by the straining component of the flow E and vanishes
for f = 0. The coefficients dij , bij , qij and Dij , Bij , Pij , Qij , where i, j = 1, 2, . . . ,

are rational functions of the viscosity ratio χ and the elasticity E. These coefficients
and the constant c1 are listed in Appendix E. The terms that involve the coefficients
dij , bij and qij represent the effect of the dissipative motion of the dispersed-phase
fluid due to the straining component of the external flow; the terms that involve the
coefficients Dij , Bij , Pij and Qij represent drop relaxation towards spherical shape
due to the capillary and Marangoni forces. Note that the terms associated with
the external flow in equations for time derivatives of f ′

ij (f ′′
ij ) are odd (even), and
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the terms associated with the interfacial forces are even (odd) with respect to the
transformations (5.5)–(5.6) associated with the reversal of the direction of the flow:

f ′
lm → f ′

lm, g′
lm → g′

lm, (5.5)

f ′′
lm → −f ′′

lm, g′′
lm → −g′′

lm. (5.6)

Setting Ma = 0 in the shape-evolution equations yields the O(Ca−1ε3) theory for
a clean drop. Thus, we extend the work by Barthès-Biesel & Acrivos (1973a), as
discussed in more detail in § (8).

The effective stress of a dilute emulsion is determined from the shape and surfactant
via

T d
12 = τ0 + τ11f20 + τ12f40 + τ13f

′
44 + τ14f

2
20 + τ15f

′2
22 + τ16f

′′2
22

+ Ca−1
0 [−4τ21f

′′
22 + τ22f20f

′′
22] + Ma[τ21(6f ′′

22 − g′′
22)

+ τ31f20f
′′
22 + τ32(f20g

′′
22 + g20f

′′
22)] (5.7)

N1 = 2τ13f
′
44 + n11f

′
22f

′′
22 + 2Ca−1

0 [4τ21f
′
22 − τ22f20f

′
22]

− 2Ma[τ21(6f ′
22 − g′

22) + τ31f20f
′
22 + τ32(f20g

′
22 + g20f

′
22)] (5.8)

N2 =
√

6τ11f
′′
22 + 3

√
10τ12f

′′
42 + n21f20f

′′
22

+
√

3
2
Ca−1

0

[
−4τ21f20 + τ22

(
f ′2

22 + f ′′2
22 − 1

2
f 2

20

)]
+
√

3
2
Ma
[
τ21 (6f20 − g20)

+ τ31

(
f ′2

22 + f ′′2
22 − 1

2
f 2

20

)
+ 2τ32

(
f ′

22g
′
22 + f ′′

22g
′′
22 − 1

2
f20g20

)]
. (5.9)

The coefficients τij and nij are rational functions of the viscosity contrast χ and E.
They are listed in Appendix F.

The three-dimensional axisymmetric extensional flow u∞ = ( 1
2
x, 1

2
y, −z) represents

an important type of linear flow not described by (2.2). Because of the axial symmetry
fjm = 0 and gjm = 0 if m 
= 0. The evolution equations take a simpler form

∂f20

∂t
= s

(
d31 − d11f20 + 1

2
d34f

2
20 + 6d36f40

)
+ Ca−1

0

(
D1f20 − D2f

2
20

)
+ Ma

(
D12f20 + D13g20 − D21f

2
20 − D22f20g20

)
∂f40

∂t
= s

(
3d41f20 −

√
3
5
d64f

2
20 − 1

3

√
5
3
d43f40

)
+ Ca−1

0

(
D3f40 + 3D4f

2
20

)
+ Ma

(
P12f20 + P13g20 + 3P21f

2
20 + 3P22f20g20

)
(5.10)

∂g20

∂t
= s

(
3d31 − b11f20 − b12g20 + 1

2
b34f

2
20 − b14f20g20 + 6b19f40 + 6b20g40

)
+ Ca−1

0

(
2D12f20 − B2f

2
20 − B21f20g20

)
+ Ma

(
B12f20 + B13g20 − B22f

2
20 − B23f20g20 − B24g

2
20

)
∂g40

∂t
= s

(
3q1g20 −

√
3
5
q16f

2
20 +

√
5q11f20g20 − 1

3

√
5
3
(q3f40 + q2g40)

)
+ Ca−1

0 (Q1f40 + 3Q2f
2
20 + 3Q22f20g20)

+ Ma
(
Q12f40 + Q13g40 + 3Q21f

2
20 + 3Q23f20g20 + 3Q24g

2
20

)
, (5.11)

where s =−
√

6. Note that the coefficients corresponding to relaxation driven by
interfacial forces are identical to those in (5.3).
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6. Weak-flow expansions for a stationary drop
We focus our attention on steady state drop deformation; however, our analysis

can also be used to explore transient flows using the evolution (5.3). We present
theoretical calculations for drop deformation and the effective stress of an emulsion
consisting of deformable surfactant-free drops in the weak-flow limit, where the small
parameter is the flow strength ε ≡ Ca . In the case of no viscosity contrast, χ = 2, the
expansions reduce to the ones derived in Vlahovska et al. (2005).

6.1. Axisymmetric extensional flow

To third order in Ca , we obtain that the steady-state shape and surfactant distribution
are described by

fj0 = f
(1)
j (E) Ca + f

(2)
j (E) Ca2 + f

(3)
j (E) Ca3,

gj0 = g
(1)
j (E) Ca + g

(2)
j (E) Ca2 + g

(3)
j (E) Ca3.

(6.1)

In irrotational flows, stationary shape and surfactant distribution are independent
of the viscosity contrast, because the Marangoni stresses immobilize the surface at
steady state (Milliken et al. 1993; Bazhlekov et al. 2006). At leading order, the only
non-zero contributions are

f
(1)
2 =

√
5 π, g

(1)
2 =

(1 + 2E)
√

5 π

E
. (6.2)

The second-order terms are

f
(2)
2 =

15
√

5 π

7
, f

(2)
4 =

45
√

π

14
(6.3)

g
(2)
2 =

5 (5 + 17E)
√

5 π

14E
g

(2)
4 =

15 (9 + 4E)
√

π

14E
.

The third-order terms are

f
(3)
2 =

5 (216 − 49E)
√

5π

98
f

(3)
4 =

7650
√

π

539
f

(3)
6 =

5625
√

π/13

308

g
(3)
2 =

5
(
199 + 1518E − 196 E2

) √
5π

196 E
g

(3)
4 =

75 (278 + 213E)
√

π

539 E

g
(3)
6 =

1125 (27 − 8E)
√

π/13

308 E
. (6.4)

6.2. Simple-shear flow

To third order in Ca , the steady-state shape and surfactant distribution for a drop in
shear flow are described by the expansions

fjm = f
(1)
jm (E, χ) Ca + f

(2)
jm (E, χ) Ca2 + f

(3)
jm (E, χ) Ca3,

(6.5)
gjm = g

(1)
jm(E, χ) Ca + g

(2)
jm(E, χ) Ca2 + g

(3)
jm(E, χ) Ca3.

The rotational component of the flow continuously redistributes the surfactant and,
therefore, the stationary state of the drop will, in principle, depend on the viscosity
contrast. The convergence radius for these weak-flow expansions is best for moderate
viscosity contrasts. Here we list only deformation parameters with j � 4. At leading
order, the solution is independent of viscosity contrast

f
′′(1)
22 = −

√
5π

6
, g

′′(1)
22 = −1 + 2E

E

√
5π

6
. (6.6)
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The effect of rotation, and thus viscosity contrast, enter at second order and the
non-zero contributions are

f
(2)
20 = −5

7

√
5π, f

′(2)
22 =

1

24

3 + χ + E (9 + 23χ)

E

√
5π

6
,

f
(2)
40 =

5

28

√
π, f

′(2)
44 = −5

4

√
5π

14
,

(6.7)

and

g
(2)
20 = − 5

42

5 + 17E

E

√
5π, g

′(2)
22 =

1

12

10χ + 3E (3 + χ) + E2 (9 + 23χ)

E2

√
5π

6
,

g
(2)
40 =

5

84

9 + 4E

E

√
π, g

′(2)
44 = − 5

12

9 + 4E

E

√
5π

14
.

(6.8)

Note that the expressions for f
′(2)
22 and g

′(2)
22 in the χ = 2 case listed in Vlahovska et al.

(2005) contain typographical errors. At third order, the non-zero contributions are

f
′′(3)
22 =

1

28 224

S1(E, χ)

E2

√
5π

6
,

f
′′(3)
42 =

425

539

√
5π

2
,

f
′′(3)
44 = −−10 (1 + χ) + E (239 + 109χ) + E2 (839 + 2049χ)

864E2

√
5π

14
,

(6.9)

and

g
′′(3)
22 =

1

14 112

S2(E, χ)

E3

√
5π

6
,

g
′′(3)
42 =

25

3234

278 + 213E

E

√
5π

2
,

g
′′(3)
44 = −−540χ + E (385 + 2731χ) + E2 (3133 + 3779χ) + 2E3 (569 + 1359χ)

864E3

√
5π

14
,

(6.10)

where

S1(E, χ) = 980χ(3 + χ) + 147E(21 + 34χ + 9χ2)

+ E2(−99 711 + 20 286χ + 25 921χ2) + 23 520E3

S2(E, χ) = 9800χ2 + 98E(9 + 96χ + 31χ2) + E2(−18 147 + 12 642χ

+ 3577χ2) + E3(−178 191 + 20 286χ + 25 921χ2) + 23 520E4.

(6.11)

Substituting the shape and surfactant expansions (6.5) in (5.7) yields for the effective
shear viscosity a dilute emulsion

T d
12 =

5

2
− 5

1176E2
[245χ + 98E(3 + χ) + E2(−1059 + 1127χ)]Ca2. (6.12)

At very low shear rates an emulsion of surfactant-covered drops behaves as a
suspension of rigid spheres with viscosity given by Einstein’s result, 1+5/2φ and zero
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normal stresses. Shape deformation and surfactant redistribution at increasing shear
rate give rise to shear thinning, which depends on the viscosity contrast. However, at
leading order the normal stresses are independent of viscosity contrast

N1 =
5

2

4E + 1

E
Ca,

N2 = −1

2
N1 +

75

28
Ca.

(6.13)

Given that stresses are normalized by the viscous stress ηγ̇ , the rheology is obtained
at one order less than the drop shape and surfactant distribution. For example,
the O(Ca3) term in the expansion of the normal stresses depends on the O(Ca4)
perturbation in shape and surfactant.

6.3. Surfactant-free drop

For the sake of completeness, we list the expansions for the stationary shapes of
surfactant-free drop. A comparison of the drop shapes in the absence and the presence
of surfactant can provide a quantitative estimate the importance of surfactant effects.

6.3.1. Axisymmetric extensional flow

The third-order expansion for a surfactant-free drop in extensional flow reads

fj0 = f
(1)
j (χ) Ca + f

(2)
j (χ) Ca2 + f

(3)
j (χ) Ca3. (6.14)

The expansion coefficients depend on viscosity contrast

f
(1)
2 = DT

√
5π

f
(2)
2 = DT

−36 − 309 χ + 601 χ2

280 χ2

√
5π

f
(2)
4 = DT

−95 + 751 χ

252χ

√
π

(6.15)

f
(3)
2 = DT

7776 + 115 528 χ − 195 631 χ2 − 2 862 098 χ3 + 3 220 761 χ4

235 200 χ4

√
5π

f
(3)
4 = DT

639 780 + 595 807 χ − 51 008 602 χ2 + 85 699 543 χ3

6 985 440 χ3

√
5π

f
(3)
6 = DT

31 449 − 628 546 χ + 2 934 377 χ2

192 192χ2

√
π

13
,

where DT is Taylor’s deformation parameter (Taylor 1934):

DT =
(−3 + 19 χ)

20 χ
. (6.16)

6.3.2. Simple-shear flow

The expansion for the shape parameters of a surfactant-free drop in shear flow is

fjm = f
(1)
jm (χ) Ca + f

(2)
jm (χ) Ca2 + f

(3)
jm (χ) Ca3. (6.17)

At leading order, the only non-zero contribution is

f
′′(1)
22 = −DT

√
5π

6
. (6.18)
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The second-order expansion terms are

f
(2)
20 = DT

(36 + 309χ − 601χ2)

168χ2

√
π

5
, f

′(2)
22 = D2

T

2χ + 1

2

√
5π

6
,

f
(2)
40 = DT

−95 + 751χ

4536χ

√
π, f

′(2)
44 = DT

95 − 751χ

648χ

√
5π

14
.

(6.19)

At third order, we have

f
′′(3)
22 = DT

(−1944 − 28 882χ + 49 900χ 2 + 706 925χ 3 − 811 695χ 4 + 108 927χ 5 + 159 201χ 6)

35 280χ 4

√
π

30
,

f
′′(3)
42 = DT

639 780 + 595 807χ − 51 008 602χ 2 + 85 699 543χ 3

25 147 584χ 3

√
π

10
,

f
′′(3)
44 = −DT

5077 − 62 376χ + 119 505χ 2 + 507 394χ 3

46 656χ 2

√
π

70
.

(6.20)

The expansions for the effective stresses of a dilute emulsion (5.7)–(5.9) are

T d
12 =

5

2
− 3

2χ
− Ca2DT (χ)

× −3888 − 27 308χ + 231 041χ2 − 33 637χ3 − 189 761χ4 + 159 201χ5

35 280χ4

N1 = Ca
(
10D2

T

)
,

N2 = − 1
2
N1 − CaDT

3(12 + 9χ − 25χ2)

28χ2
.

(6.21)

The expressions for the normal stresses agree with Schowalter, Chaffey & Brenner
(1968). The shear thinning coefficient differs from Barthès-Biesel & Acrivos (1973b),
but this can be attributed to the fact that the O(ε3) theory of these authors was
incomplete (see § 8).

7. Discussion
The results presented in the previous section show that the presence of surfactant

suppresses the sensitivity of the stationary state to viscosity contrast. However, the
transient dynamics strongly depends on viscosity contrast as illustrated in figure 2:
higher drop viscosities slow the approach to the steady state.

In axisymmetric extensional flow, the stationary deformation of a surfactant-covered
drop is independent of viscosity ratio in contrast to a surfactant-free drop, see
(6.15). Marangoni stresses immobilize the interface at steady state. Hence, the surface
velocity vanishes and there is no fluid flow inside the drop. Surfactant enhances drop
deformation; in the high-viscosity limit, χ → ∞, the deformation of a clean drop is
smaller than a surfactant-covered one by a factor of 19/20 (at leading order).

Drop deformation in a simple-shear flow is illustrated in figure 3, where the
predictions from the small-deformation theory are compared to numerical simulations
using the boundary integral method (Vlahovska et al. 2005). In weak flows, the
stationary state is independent of viscosity contrast at leading order; the drop feels
only the extensional component of the flow and the Marangoni stresses rigidify
the interface. The effect of viscosity contrast enters at second order because of
the rotational component of the flow acting on the deformed drop. The rotation
continuously redistributes the surfactant, thereby remobilizing the interface. In strong
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Figure 2. Drop shape evolution upon startup and cessation of axisymmetric extensional flow
with Ca = 0.02 and E = 1 for two different viscosity ratios, χ = 2 (solid line) and χ = 11
(dashed line). The dotted line shows the stationary deformation.

flows, the effect of viscosity contrast is more pronounced as the numerical results in
figure 3 indicate.

Experiments typically characterize drop response to shear flow by a deformation
parameter, D, and the inclination angle with respect to the flow direction, φ0. D is
defined as (L − B)/(L + B), where L = r(φ0) and B = r(φ0 + π/2) are the drop lengths
along the main and minor axes of the ellipsoidal drop contour in the flow plane.
Using (3.1) and the expansions for the stationary shape parameters (6.5), we obtain

φ0 =
π

4
− Ca

[
(23χ + 9)E + χ + 3

48E

]

+ Ca2

[
(21χ − 29)E2 + (31 − 19χ)E + 10(χ + 1)

1152E2

]
. (7.1)

The long and short axes, r+ and r− respectively, are

r± = 1 ± Ca
5

4
+ Ca2 1175

672
∓ Ca3 5

2 483 712E2
[1617(13χ2 + 38χ − 3)

+ 517 440E3 + (285 131χ2 + 223 146χ − 2 971 701)E2 + 4312(χ + 3)2E]. (7.2)

Accordingly, L = 2r+, B = 2r− and the deformation parameter is

D = Ca
5

4
+

5Ca3

2 483 712E2
× [517 440E3 + (285 131χ2 + 223 146χ − 1 886 001)E2

+ 4312(χ + 3)2E + 1617(13χ2 + 38χ − 3)] + O(Ca4). (7.3)

The leading-order deformation is independent of the elasticity and viscosity ratio.
The theory agrees well with experimental data, as shown in figures 4 and 5.

The rheology of a dilute emulsion of surfactant-covered deformable drops is shown
in figures 6 and 7. The results predict a shear-thinning viscosity, a positive first normal
stress difference and a negative second normal stress difference, as generally observed
in emulsions. Drop deformation and surfactant redistribution both contribute to these
non-Newtonian features. In weak flows, the surfactant immobilizes the interface so
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Figure 3. Drop deformation in a simple-shear flow: The shape parameters f ′′
22, f ′

22 and f ′
20

as a function of the flow strength Ca for a surfactant-covered drop with elasticity E = 1
and viscosity contrast: χ = 1 (circles, solid line), χ = 2 (crosses, dashed line), χ = 6 (triangles,
dotted line). The points are data from boundary integral simulations. The lines represent the
third-order small-deformation theory (6.5).

that the emulsion behaves as a suspension of rigid spheres at leading order. The
viscosity contrast affects the rheology at second order because of the tendency for
the rotational component of the flow to align the deformed drop with the velocity.
Drop alignment increases with viscosity contrast leading to enhanced shear thinning
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Figure 4. Steady drop deformation in an extensional flow u∞ = (x, −y, 0) (Hu & Lips
2003). Points are experimental data for various surfactant coverage and viscosity contrasts
χ = 1.093 and χ = 3.3. The theoretical line is D = 5/2Ca .
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Figure 5. Steady deformation and inclination angle of a surfactant-covered drop in a simple
shear flow (Feigl et al. 2007). Points are experimental data for viscosity contrasts χ = 1.335
(circles), χ = 4.335 (crosses), and χ = 7.338 (squares). The theoretical lines are given by (7.3)
and (7.1).

as predicted by (7.1). In strong flows, the effect of viscosity contrast is more visible
as the numerical results in figure 3 indicate. Our numerical results agree qualitatively
with the simulations of Yon & Pozrikidis (1998); however, quantitative comparison is
not possible because the simulations include surfactant diffusion. Our theory quant-
itatively describes the rheology, although the radius of convergence of expansions
(6.12) and (6.13) is apparently small, as indicated by the results in figures 6 and 7.

8. Relation to previous small-deformation analyses
The classic works on deformation of surfactant-free drops (Chaffey & Brenner

1967; Cox 1969; Frankel & Acrivos 1970; Barthès-Biesel & Acrivos 1973a) employ
a tensorial representation of the spherical harmonics. A spherical harmonic of order
j is a symmetric traceless Cartesian tensor of j th order, having (2j + 1)-independent
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Figure 6. Effective shear viscosity as a function of the flow strength Ca for an emulsion of
surfactant-covered drops with elasticity E = 1 and different viscosity contrasts: χ = 1 (circles,
solid line), χ = 2 (crosses, dashed line), χ = 6 (triangles, dotted line). The points are data from
boundary integral simulation. The lines represent the third-order small-deformation theory
(6.12).
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Figure 7. Normal stress differences N1 and N2 as a function of the flow strength Ca for an
emulsion of surfactant-covered drops with elasticity E = 1 and different viscosity contrasts:
χ = 1 (circles), χ = 2 (crosses), χ = 6 (triangles). The points are data from boundary integral
simulation. The lines represent the small-deformation theory (6.13).

components

Ψj (Ω) = ∇j

(
1

r

)
, (8.1)

where ∇j denotes applying the gradient operator j times.
The correspondence between the 2j + 1 components of the Cartesian tensor (8.1)

and the 2j + 1 scalar harmonics Yjm (m = −j, . . . , j ) defined by (A 1) is discussed in
Appendix A; for more details the reader is also referred to Vlahovska (2003). We
have found that the scalar harmonics offered a less complex way to perform the
calculations for the higher order perturbations, because there is a very well-developed
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theory for manipulating the products of spherical harmonics (Jones 1985;
Varshalovich, Moskalev & Kheronskii 1988).

In this section, we translate the shape-evolution equations from a tensorial form
(Rallison 1980) to our scalar spherical harmonics representation. The motivation is
to ease the communication between researchers that are more accustomed to either
notation. The perturbation f of the drop shape (3.1) in the tensorial form reads

f = ε3F2 : r̂ r̂ + ε2

[
−6

5
F2 : F2 + 105F4 ...

. r̂ r̂ r̂ r̂

]
+ O(ε3), (8.2)

where Fj is a fully symmetric traceless tensor of the order j . Extending the analysis of
Barthès-Biesel & Acrivos (1973a), the following evolution equations for the second-
and fourth-order tensors are obtained:

ε
∂Fj

∂t
= Lj , (8.3)

where

L2 = −Ω̂F2 + a0E + ε [κa1F2 + a2Sd(E · F2)]

+ ε2
[
κa3Sd

(
F2

2

)
+ a4EF2 : F2 + a5F2E : F2 + a7Sd

(
E · F2

2

)
+ a8F4 : E

]
+ ε3κ (a6F2F2 : F2 + a9F2 : F4) + O(ε3), (8.4)

and

L4 = −Ω̂F4 + b1Sd4(EF2) + ε [κb0F4 + κb2Sd4(F2F2) + b3Sd4(E · F4)

+ b4Sd4(E · F2F2) + b5Sd4(F2 · F2E)]

+ ε2κ [b6Sd4(F2 · F2F2) + b7Sd4(F2 · F4)] + O(ε2). (8.5)

In the above equations, κ = Ca−1, the deviatoric operators Sd and 1
3
Sd4 represent the

fully symmetric traceless parts of the corresponding second- and fourth-order tensors

and the operator Ω̂ represents rigid-body rotation of the drop due to the rotational
component of the flow. Note that Rallison (1980) omitted the term proportional to
b5 in his analysis; however, there are two independent ways to couple E and two
tensors F2 to obtain a fourth-order tensor. The complete set of shape equations
at O(ε3) should also include the sixth-order tensor F6. However, the steady-state
rheology is not affected by F6, and we omit it for the sake of keeping the presentation
concise.

The expressions for the coefficient a0, . . . , a9 and b0, . . . , b2 were derived by Barthès-
Biesel & Acrivos (1973a). Note that there is a misprint in the expression for b2, 431
should read 413. The expression for a9 should be corrected to

a9 =
80
(
81 052χ5 + 68 132χ4 + 10 203χ3 − 20 850χ2 + 135χ + 80

)
21(2χ + 1)2(10χ + 1)(17χ − 1)(19χ − 3)2

. (8.6)

We obtain for the coefficients b3, b4, b5, b6 and b7, needed for a consistent O(Ca2)
theory, the following expressions:
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b3 =
20(−29 + 4χ)

11(1 + 2χ)(1 + 10χ)
,

b4 =
288(−2 + χ)(−2 + 29χ)

539(1 + 2χ)2(1 + 10χ)
,

b5 =
72(−2 + χ)

77(1 + 2χ)(1 + 10χ)
, (8.7)

b6 =
20P (χ)

231(1 + 2χ)2(1 + 10χ)2(−1 + 17χ)2(−3 + 19χ)2
,

b7 =
20
(
2 715 400χ5 + 1 976 946χ4 − 468 621χ3 − 140 120χ2 + 13 143χ + 276

)
77(2χ + 1)(10χ + 1)2(17χ − 1)2(19χ − 3)

,

where

P (χ) = 15 156 + 577 947χ − 11 326 093χ2 + 16 345 769χ3 + 247 274 201χ4

− 997 178 008χ5 + 1 392 085 940χ6 − 485 298 400χ7. (8.8)

The perturbation solution at p � 2 for a surfactant-free drop agrees with the
second-order theory derived by Barthès-Biesel & Acrivos (1973a). Greco (2002)
reported some discrepancies with Barthès-Biesel & Acrivos (1973a), which we do
not find. Moreover, we have carefully checked the coefficients with boundary-integral
numerical simulations of drop deformation in axisymmetric extensional flow as well
as with the theory for equiviscous drop (Vlahovska et al. 2005).

9. Conclusions
A perturbation solution of order O(ε3), where ε measures the magnitude of the

shape distortion, was developed to describe the dynamics of a deformable surfactant-
covered drop with arbitrary surfactant elasticity and viscosity contrast in creeping
flows. The solution is applicable to any linear flow under transient or steady-state
conditions. Spherical harmonics are employed to cast the problem into a matrix form
that facilitates the application of the boundary conditions on the interface of the
deformed drop. Our analysis also extends the solutions of Barthès-Biesel & Acrivos
(1973a) for a surfactant-free drop by adding the ε3Ca−1 terms.

Weak-flow expansions O(Ca3) for the stationary drop shapes in linear flows and
effective stress of a dilute emulsion were derived. Predictions of drop shape, surfactant
distribution and emulsion rheology based on our small-deformation theory are in
quantitative agreement with our numerical simulations using the boundary integral
method, although the weak-flow expansion was found to have a relatively small radius
of convergence. A more efficient expansion based on the inverse viscosity contrast
will be reported in a forthcoming paper.

Our analysis provides a suitably accurate theory for experimental determination
of interfacial tension between immiscible polymers using drop deformation methods
(Hu 2008). Surfactants affect the collective drop dynamics in non-dilute systems,
e.g. hydrodynamic interactions and drop coalescence (Hu, Pine & Leal 2000; Ha,
Yoon & Leal 2003; Hudson, Jamieson & Burkhart 2003; Rother & Davis 2004;
Van Hemelrijck et al. 2004; Rother, Zinchenko & Davis 2006) and modify emulsion
rheology (Pozrikidis 2001). The analytical results can serve to validate numerical
simulations of flow of many surfactant-covered drops. The theory also provides a
rigorous basis for studying the dynamics of other deformable particles with interfaces
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that develop Marangoni stresses such as vesicles and biological cells (Seifert 1999;
Misbah 2006; Vlahovska & Gracia 2007; Lebedev, Turitsyn & Vergeles 2007).

Appendix A. Transformation between scalar and tensor spherical-harmonics
representation

The normalized spherical scalar harmonics are defined as

Yjm (Ω) =

[
2j + 1

4π

(j − m)!

(j + m)!

]1/2

(−1)mP m
j (cos θ)eimϕ, (A 1)

where (r, θ, ϕ) are the spherical coordinates and P m
j (cos θ) are the Legendre

polynomials; the index m takes 2j + 1 values from −j to j .
To translate (8.3)–(8.5) into the spherical-harmonics representation (4.34), we

introduce spherical tensors Tlm, defined by the relations

Y2m = T2m : r̂ r̂, (A 2)

Y4m = T4m ...
. r̂ r̂ r̂ r̂. (A 3)

The real and imaginary components of Tlm are given by

Tlm =
1√
2

(T′
lm + iT′′

lm), (A 4)

where T′
lm and T′′

lm are real. Tensors T′
lm and T′′

lm, where m = 0, . . . , l, form an
orthonormal basis in the space of fully symmetric traceless tensors of the order
l, with the normalization of the scalar products for l = 2, 4 given by

8π

15
T(i)

2m : T(i ′)
2m′ = δmm′δii ′, (A 5)

32π

315
T(i)

4m ...
.
T(i ′)

4m′ = δmm′δii ′, (A 6)

where T(1)
lm ≡ T′

lm and T(2)
lm ≡ T′′

lm.
Consistently with (3.9) and (A 2)–(A 4), stationary drop shapes are described by

tensors T with even values of the index m. Explicit expressions for non-vanishing
matrix elements of the tensors T′

lm and T′
lm, with l = 2, 4 and m = 2k, are

T′11
20 = T′22

20 = − 1
2
T′33

20 = −1

4

(
5

π

)1/2

, (A 7a)

T′11
22 = −T′22

22 =
1

4

(
15

π

)1/2

, (A 7b)

T′′12
22 =

1

4

(
15

π

)1/2

. (A 7c)

Note that the superscript indices denote the Cartesian tensor component. The fourth-
order tensors are

1

3
T′1111

40 =
1

3
T′2222

40 =
1

8
T′3333

40 = T′1122
40 = −1

4
T′1133

40 = −1

4
T′2233

40 =
3

16

(
1

π

)1/2

, (A 8a)

T′1111
42 = −T′2222

42 = −T′1133
42 = T′2233

42 = −3

8

(
5

π

)1/2

, (A 8b)
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T′′1112
42 = T′′2221

42 = − 1
2
T′′1233

42 = − 3

16

(
5

π

)1/2

, (A 8c)

T′1111
44 = T′2222

44 = −T′1122
44 =

3

16

(
35

π

)1/2

, (A 8d)

T′′1222
44 = −T′′2111

44 = − 3

16

(
35

π

)1/2

; (A 8e)

the remaining non-zero elements are obtained by permutations of the components.
According to (A 2)–(A 4) and having in mind that there are no contributions from

odd l or m, the relation between (3.9) and (8.2) of the drop shape is

njFj =

j/2∑
k=1

k∑
n=0

(f ′
2k 2nT

′
2k 2n + f ′′

2k 2nT
′′
2k 2n), (A 9)

where n2 = 3 and n4 = 105 are the normalization factors, see (8.2). Evolution equations
for the coefficients f

(i)
jm = f ′

jm, f ′′
jm, j = 2, 4 are obtained using relations

∂f
(i)
2m

∂t
=

8π

15
T(i)

2m : L2, m = 0, 2, (A 10)

and

∂f
(i)
4m

∂t
=

32π

315
T(i)

4m ...
.
L4, m = 0, 2, 4, (A 11)

which follow from (8.5), (A 5) and (A 6).
By inserting (8.4) and (8.5) into (A 10) and (A 11), and evaluation of the scalar

products, evolution (5.3) are obtained, with

d11 =
1

2
√

6
a2, (A 12)

d12 = −1

6

√
5

6π
(3a5 + a7), (A 13)

−70
√

2

3
d13 = −20

√
7

3
d22 = −140

√
10

3
d36 = 20

√
7

3
d37 = a8, (A 14)

d21 = −1

2

√
5

6π
(6 + a5), (A 15)

d31 = −
√

6π

5
a0, (A 16)

d32 = − 1

24

√
5

6π
(6a4 + a7), (A 17)

d33 = −1

4

√
5

6π
(−12 + 2a4 + a7), (A 18)

d34 = −1

4

√
5

6π
(2a4 + 2a5 + a7), (A 19)
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−
√

35

2
d41 = −

√
14

3
d61 = d71 = 5

√
21b1, (A 20)

d42 =
5

6
√

6π
(7b4 + 2b5) , (A 21)

1

3

√
7

10
d43 = d52 =

1

3

√
14

3
d65 = −d73 =

1

4
√

7
b3, (A 22)

d51 =
5

6

√
5

2π
b4, (A 23)

d62 =
5

12

√
5

2π
(b4 − b5), (A 24)

d63 =
5

6

√
5

2π
b5, (A 25)

d64 =
5

6

√
5

2π
(b4 + b5), (A 26)

d72 = − 5

12

√
35

3π
(b4 + 2b5), (A 27)

and

D1 = a1, (A 28)

D2 =
1

12

√
5

π
a3, (A 29)

D3 = b0, (A 30)

D4 =

√
1

15
D41 =

√
2

35
D42 = 5π−1/2b2. (A 31)

Appendix B. Spherical harmonics
B.1. Definitions of tensor spherical harmonics

For the sake of completeness, we list the definitions of scalar- and vector-spherical
harmonics (Jones 1985; Varshalovich et al. 1988). The vector-spherical harmonics are
defined as

yjm0 = [j (j + 1)]−1/2r∇̃Yjm,

yjm1 = −ir̂ × yjm0,

yjm2 = r̂Yjm,

⎫⎬
⎭ (B 1)

where ∇̃ denotes the angular part of the gradient operator. The vectors yjm0 and yjm1

are tangential, while yjm2 is normal to a sphere.
The tensor spherical harmonics are defined as

Yjj−2m = r2−j

[
j + 1

(j − 1)(2j − 1)(2j + 1)

]1/2

∇′

(
rj−1

(
yjm0 +

[
j

j + 1

]1/2

yjm2

))

Yjj−1m = r1−j
[

1
2
(j − 1)(2j + 1)

]−1/2 ∇′(rj yjm1)

⎫⎪⎬
⎪⎭
(B 2)
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and

Yjjm = r−j

[
6

(2j + 3) (2j − 1)

]1/2

∇′

(
rj+1

(
yjm0 −

[
j + 1

j

]1/2

yjm2

))
,

Yjj+1m = r2+j
[

1
2

(2 − j ) (2j + 1)
]−1/2 ∇′ (r−j−1 yjm1

)
,

Yjj+2m = r3+j

[
j

(j + 2)(2j + 3)(2j + 1)

]1/2

∇′

(
r−j−2

(
yjm0 −

[
j + 1

j

]1/2

yjm2

))
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)

where ∇′ denotes taking a symmetric, traceless gradient of a vector harmonic. The
spherical tensor basis a2m discussed in B�lawzdziewicz et al. (2000) corresponds to
Y20m.

B.2. Rate-of-strain tensor

The basic set of solution u±
jmq (4.14) is introduced in B�lawzdziewicz et al. (2000).

Taking a symmetric, traceless gradient of a vector harmonic of order j produces five
tensorial harmonics with an angular number l taking values j −2, j −1, j, j +1, j +2
(Varshalovich et al. 1988). Here we list the rate-of-strain matrices defined as ∇′u±

jmq =

U±
qq ′Yjj+q ′m:

U+
qq ′ (j ; r) = rj

⎛
⎜⎝

A+
0 −2(r

−2 + B+
0 −2) 0 A00 0 0

0 A+
1 −1r

−1 0 0 0

A+
2 −2(r

−2 + B+
2 −2) 0 A+

2 0 0 0

⎞
⎟⎠ (B 4)

and

U−
qq ′ (j ; r) = r−j−1

⎛
⎜⎝

0 0 A−
0 0 0 A−

0 2(r
−2 + B−

0 2)

0 0 0 A−
11r

−1 0

0 0 A−
2 0 0 A−

2 2(r
−2 + B−

2 2)

⎞
⎟⎠ , (B 5)

where

A+
0 −2 = − 1

2
[(−1 + j )(1 + j )(1 + 2j )(−1 + 2j )]1/2 , B+

0 −2 =
3 + 2j

1 − 2j
,

A+
0 0 = −

[
3 (3 + 2j )

2 (−1 + 2j )

]1/2

,

A+
1 −1 =

[
1
2

(−1 + j ) (1 + 2j )
]1/2

,

A+
2 −2 = − 1

2

[
(−1 + j ) (1 + 2j )

j (−1 + 2j )

]1/2

(j (5 + 2j ) − 3), B+
2 −2 =

j (5 + 2j ) + 3

j (5 + 2j ) − 3
,

A+
2 0 =

[
3(1 + j ) (3 + 2j )

2j (−1 + 2j )

]1/2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 6)
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and

A−
0 0 =

[
3 (2j − 1)

2 (2j + 3)

]1/2

,

A−
0 2 =

1

2
[j (j + 2) (2j + 1) (2j + 3)]1/2 , B−

0 2 =
1 − 2j

2j + 3
,

A−
11 =

[
1

2
(j + 2) (2j + 1)

]1/2

,

A−
2 0 =

[
3j (2j − 1)

2 (j + 1) (2j + 3)

]1/2

,

A−
2 2 = −1

2

[
(j + 2) (2j + 1)

(j + 1) (2j + 3)

]1/2

(6 − j (2j − 1)) , B−
2 2 =

6 + j (2j − 1)

6 − j (2j − 1)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 7)

B.3. Recoupling formulae for products of vector- and tensor-spherical harmonics

Starting from the general formula for the inner product of tensor harmonics
(Varshalovich et al. 1988) we derive new, simplified expressions for the inner product
of a tensor harmonic and the tangential vector harmonic yjm0:

yjm0 · Yj1 j1+q1 m1
= yj2m2q2

ζ (j, j1, j2, m, m1, m2) Cq1q2
(j, j1, j2) , (B 8)

where the Clebsch–Gordan coefficient ζ is defined by (B 13) and

C−20 = − (j (j + 1) − j2 (j2 + 1))2 − j1 (2j (j + 1) + 2j2 (j2 + 1) + j1 (j1 − 1) (j1 + 1))

[j (j + 1) j1 (j1 − 1) (2j1 − 1) (2j1 + 1) j2 (2j2 + 1)]1/2
,

C−10 = −c4 [j1 − 1]−1/2
(
j + j 2 − j2 − j 2

2

)
,

C00 =

√
2

3

3 (j (j + 1) − j2 (j2 + 1))2 + j1 (j1 + 1) (−4j (j + 1) + j1 (j1 + 1) − 4j2 (j2 + 1))

[j (j + 1) j1 (j1 + 1) (2j1 − 1) (2j1 + 3) j2 (j2 + 1)]1/2
,

C10 = −c4 [j1 + 2]−1/2
(
j + j 2 − j2 − j 2

2

)
,

C20 =
(j (j + 1) − j2 (j2 + 1))2 + (j1 + 1) (2j (j + 1) + 2j2 (j2 + 1) − j1 (j1 + 1) (j1 + 2))

[j (j + 1) (j1 + 1) (j1 + 2) (2j1 + 1) (2j1 + 3) j2 (2j2 + 1)]1/2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 9)

C−22 = −2

[
j1 − 1

j (j + 1) j2 (2j2 − 1) (2j2 + 1)

]1/2

[j (j + 1) + j1 (j1 + 1) − j2 (j2 + 1)],

C−12 = c4 [(j1 − 1) j2 (j2 + 1)]1/2,

C02 =
√

6
j (j + 1) + (j1 − j2) (j1 + j2 + 1)

[j (j + 1) j1 (j1 + 1) (2j1 − 1) (2j1 + 3)]1/2
,

C22 = 2

[
j1 + 2

j (j + 1) (j1 + 1) (2j1 + 1) (2j1 + 3)

]1/2

[j (j + 1) + j1 (j1 + 1) − j2 (j2 + 1)],

C12 = −c4 [(j1 + 2) j2 (j2 + 1)]1/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 10)
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C−21 = −c2

(
j + j 2 − j1 + j 2

1 − j2 − j 2
2

)
[j1 (j1 − 1) (2 j1 − 1)]−1/2,

C−11 = c3 [j1 − 1]−1/2,

C01 = −2c2

(
3j + 3j 2 − j1 − j 2

1 − 3j2 − 3j 2
2

) [ 2j1 + 1

6j1 (j1 + 1) (2 j1 − 1) (2 j1 + 3)

]1/2

,

C11 = c3 [j1 + 2]−1/2,

C21 = −c2

(
2 + j + j 2 + 3j1 + j 2

1 − j2 − j 2
2

)
[(j1 + 1) (j1 + 2) (2 j1 + 3)]−1/2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 11)
In the above expressions

c2 =

[
(j + j1 − j2) (j − j1 + j2) (−j + j1 + j2 + 1) (j + j1 + j2 + 1)

j (j + 1) j2 (j2 + 1) (2j1 + 1)

]1/2

,

c3 = [2 (2j + 1) (2j2 + 1)]1/2 [j (j + 1) j1 (j1 + 1) j2 (j2 + 1)]−1/2

×
(
j2 (1 + j2)

(
j + j 2 + j1 + j1

2 − j2 − j 2
2

)
+ j (1 + j )

(
−j − j 2 + j1 + j 2

1 + j 2
2

))
,

c4 =

[
(2j + 1) (2j2 + 1) (j + j1 − j2) (j − j1 + j2) (1 − j + j1 + j2) (1 + j + j1 + j2)

j (j + 1) j1 (j1 + 1) j2 (j2 + 1)

]1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 12)

B.4. Clebsch–Gordan coefficient

For the sake of completeness, we list the definition of the Clebsch–Gordan coefficient

ζ (j, j1, j2, m, m1, m2, q + q2) =
(−1)m2

2

[
(2j + 1)(2j1 + 1)(2j2 + 1)

4π

]1/2

×
(

j − ξ j1 j2

0 0 0

)(
j j1 j2

m m1 −m2

)
, (B 13)

where ξ = 1 if q + q2 is even (or zero) and ξ = 0 if q + q2 is odd.(
j j1 j2

m m1 m2

)

is the Wigner 3j -symbol (Edmonds (1960)). More details about the definition and
properties of ζ can be found in B�lawzdziewicz et al. (2000). The functions χ and
θ , which appear in the recoupling formulae for products of spherical harmonics
(Vlahovska et al. 2005), are defined as

χ(j, j1, j2) = j (j + 1) + j2 (j2 + 1) − j1 (j1 + 1) , (B 14)

θ (j, j1, j2) = [(j + j1 − j2) (j − j1 + j2) (1 − j + j1 + j2) (1 + j + j1 + j2)]
1/2 . (B 15)

Appendix C. Evaluation of quantities on the interface of the deformed drop
C.1. Surface velocity

Section 4.3.1 outlined the matrix representation of the surface velocity. The kth term in
the Taylor series expansion of the velocity contains the product of k shape parameters
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f k . It is recoupled as

f k = Φ
(k)
lml

( f )Ylml
. (C 1)

The coefficient Φ
(k)
lml

( f ) is evaluated by the following recursive formula (Vlahovska
et al. 2005):

Φ
(k)
jm = 2

(k−1)jmax∑
j1=0

j1∑
m1=−j1

Φ
(k−1)
j1m1

jmax∑
j2=2

j2∑
m2=−j2

fj2 m2
ζ (j1, j2, j, m1, m2, m, 4) , (C 2)

where

Φ
(2)
jm = 2

jmax∑
j1=2

jmax∑
j2=2

j1∑
m1=−j1

j2∑
m2=−j2

fj1 m1
fj2 m2

ζ (j1, j2, j, m1, m2, m, 4) . (C 3)

After recoupling the product Ylml
yjmq1

(Vlahovska et al. 2005), we can write for the
expansion terms in (4.22)

U±,(k)
qq1

(j ; r = 1) yjmq1
= D±

jmqj2m2q2,k
( f ) yj2m2q2

, (C 4)

where

D±
jmqj2m2q2,k

=

k jmax∑
l=0

l∑
ml=−l

Φlml,kζ (j l j2 m ml m2, q + q1) U±,(k)
qq1

(j ) Cq1q2
(j lj2) . (C 5)

Here we list only the matrices D±
k for k = 1; the expressions for order 2 are rather

lengthy and can be found in Vlahovska (2003):

D+
jmqj2m2q2,1

=
∑
l ml

fl ml
ζ (j, l, j2, m, ml, m2, q + q2)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2

[
(j + 1)

j j2 (j2 + 1)

]1/2

χ (j, l, j2) −2

[
(j + 1)

j j2 (j2 + 1)

]1/2

θ (j, l, j2) 2 [j (j + 1)]1/2

−
[

j

(j + 1) j2 (j2 + 1)

]1/2

θ (j, l, j2)

[
j

(j + 1) j2 (j2 + 1)

]1/2

χ (j, l, j2) 0

− 3 + j

j
[j2 (j2 + 1)]−1/2 χ (j, l, j2)

3 + j

j
[j2 (j2 + 1)]−1/2 θ (j, l, j2) −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(C 6)

D−
jmqj2m2q2,1

=
∑
l ml

fl ml
ζ (j, l, j2, m, ml, m2, q + q2)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2

[
j

(j + 1) j2 (j2 + 1)

]1/2

χ (j, l, j2)

[
(j + 1)

j j2 (j2 + 1) j

]1/2

θ (j, l, j2) 2 [j (j + 1)]1/2

2

[
j

(j + 1) j2 (j2 + 1)

]1/2

θ (j, l, j2) −
[

(j + 1)

j j2 (j2 + 1) j

]1/2

χ (j, l, j2) 0

− −2 + j

j + 1
[j2 (j2 + 1)]−1/2 χ (j, l, j2)

−2 + j

j + 1
[j2 (j2 + 1)]−1/2 θ (j, l, j2) −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(C 7)
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C.2. Hydrodynamic tractions

The first term in the expression for the surface tractions (4.7) corresponds to tractions
on a sphere

r̂ · T̄p =

p∑
k=0

c
±
jmq,p−kR

±,(k)
qq1

(j ) yj2m2q2
, (C 8)

where the matrix R±
qq1

is defined as

r̂ · T±
jmq (r) = R±

qq1
(j ; r) yjmq1

, (C 9)

and the superscript, (k) denotes the kth term in the Taylor series. When evaluating
the tractions on a sphere (C 8) we avoid the direct coupling of a vector and tensor
harmonics by using the relation

r̂ · ∇′u = r
d

dr

(u
r

)
+

1

r
∇ (u · r) . (C 10)

Inserting (4.14) in (C 10) yields

R±
q0 (j ; r) = r

d

d r

(
U

±
0q (j ; r)

r

)
+ [j (j + 1)]1/2

U
±
2q

r
,

R±
q1 (j ; r) = r

d

d r

(
U

±
1q (j ; r)

r

)
, q = 0, 1, 2,

R±
q2 (j ; r) = −P ±

q (j ; r) + 2
d

d r
U

±
2q (j ; r) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 11)

At leading order k = 0 (4.28), the drop is not yet deformed and the surface tractions
are evaluated on sphere

Θqq ′ (j ) = R±
qq ′ (j ; 1) . (C 12)

Hence,

Θ+
qq ′ (j ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2j + 1 0 −3

(
j + 1

j

)1/2

0 j − 1 0

−3

(
j + 1

j

)1/2

0 2j + 1 +
3

j

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C 13)

Θ−
qq ′ (j ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2j − 1 0 3

(
j

j + 1

)1/2

0 −j − 2 0

3

(
j

j + 1

)1/2

0 −2j − 1 − 3

j + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C 14)

The subsequent perturbations require the evaluation of the term

np−k · Tk = np−k · ∇′u±
k − p

±
k np−k. (C 15)

The expansion of the normal vector (4.8), however, contains not only radial but also
tangential vector harmonics. A simplification similar to (C 10) is unavailable for the
product of tangential vector harmonic and tensor harmonic. Hence, it has to be
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evaluated using the relations in (B.3). The k = 1 term in (4.27) has a general form

Θ
±
jmqj2m2q2,1

=
∑
lml

ζ (j l j2 m ml m2 q + q2) fl ml

[
R±,(1)

qq1
(j ) Cq1q2

(j, l, j2)

− [l (l + 1)]1/2 U±
qq1

(j ) Cq1q2
(l, j1, j2) + [l (l + 1)]1/2 P ±

q (j ) C2q2
(l, j, j2)

]
. (C 16)

After some algebra, it is reduced to

Θ
±
jmqj2m2q2,1

=
∑
lml

flml
ζ (j l j2 m ml m2 q + q2) [j (j + 1) j2 (j2 + 1)]−1/2 X1,±

qq2
(j, l, j2) ,

(C 17)

where

X1,−
00 = χ(j, l, j2)(−χ(j, j2, l) + 1 + 7j + 4j 2) + j (2j − 1)χ (l, j, j2) ,

X1,−
01 = −1 − 6j − χ (j, l, j2) ,

X1,−
02 = [j2 (j2 + 1)]1/2 (−12j (j+1) − (2j + 1) χ (j, l, j2)) ,

⎫⎪⎬
⎪⎭ (C 18)

X1,−
10 = −4 − 3j − χ (j, l, j2) ,

X1,−
12 = [j2 (j2 + 1)]1/2 (2 + j ) ,

}
(C 19)

X1,−
20 = (j + 1)−1[j (j + 1)]1/2(−2j2(j2 + 1)(2 + 3j − 2j 2) − 9χ(j, l, j2)),

X1,−
21 =

9

1 + j
[j (j + 1)]1/2,

X1,−
22 =

3

1 + j
[j (j + 1) j2 (j2 + 1)]−1/2 (−8 (j + 1) + χ (j, l, j2)),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C 20)

and

X1,+
00 = χ (j, l, j2)

2 − (5 + 6j ) χ (j, l, j2) + 2j2 (j2 + 1) (3 + 5j + 2j 2),

X1,+
01 = 5 + 6j − χ (j, l, j2) ,

X1,+
02 = [j2 (j2 + 1)]1/2 (−12j (1 + j ) + (2j + 1) χ (j, l, j2)) ,

⎫⎪⎬
⎪⎭ (C 21)

X1,+
10 = −1 + 3j − χ (j, l, j2) ,

X1,+
12 = [j2 (j2 + 1)]1/2 (1 − j ) ,

}
(C 22)

X1,+
20 = [j (j + 1)]1/2 j−1

(
−2j2 (j2 + 1)

(
3 + 7j + 2l2

)
+ 9χ (j, l, j2)

)
,

X1,+
21 = − 9

j
[j (j + 1)]1/2,

X1,+
22 = − 3

j
[j (j + 1) j2 (j2 + 1)]1/2 (−8j + χ (j, l, j2)).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C 23)

For k = 2, the explicit expressions become very cumbersome and can be found in
Vlahovska (2003).
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C.3. Recurrence relations for the velocity

The expressions for Θ
±
qq ′ are used to find Υqq ′ (4.33). Thus, (4.31) becomes

c−
jm2,p = d(j )d(j1)[−3zjm0,p(−1 + χ(j + 1)) + zjm2,pj (j + 1) (1 + 2j )χ],

c−
jm1,p = −dc(j )d(j1)zjm1,p,

c−
jm0,p = d(j )d(j1)[zjm0,p[j (j + 1)]1/2(3 − (j + 1)(3 + j + j 2)χ)

− 3zjm2,p [j (j + 1)]1/2 (−1 + χ(j + 1))],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C 24)

where z was defined by (4.32), d (j ) by (D 11) and dc (j ) by (D 15).

C.4. Evolution equation matrices

The two terms in (3.4) describe interface evolution due to fluid motion radial and
tangential to a sphere (the expansion of ∇f involves only tangential vector-spherical
harmonics),

us · r̂ =
∑
p=0

εp�jm,pYjm, (C 25)

εus · ∇f =
∑
p=1

εpϑjm,pYjm. (C 26)

Radial and tangential vector harmonics do not couple (B�lawzdziewicz et al. 2000;
Vlahovska et al. 2005), and in particular r̂ · yjmq = δq2Yjm. Hence, in the product of the

surface velocity (4.23) and the unit radial vector only matrix coefficients D±
j ′m′q ′jmq,k

with q = 2 remain

�jm,p = c
±
jm2,p +

p∑
k=1

c
±
j ′m′q ′,p−kD

±
j ′m′q ′jm2,k ( f ) ν = in, out, (C 27)

where the diagonal form of D±
j ′m′q ′jm2,0 (4.24) is taken into account. For the second

term (C 26), we get

ϑjm,pYjm =

p∑
k=1

p−k∑
n=0

c
±
j ′′′m′′′q ′′′,p−k−nD

±
j ′′′m′′′q ′′′j ′m′q ′,n( f )Nj ′′m′′q ′′,k ( f ) yj ′m′q ′ · yj ′′m′′q ′′, (C 28)

where the matrix N is the spherical harmonics representation of ∇f , given in
Vlahovska et al. (2005).

The scalar product of vector harmonics in (C 28) is further recoupled using the
formulae from B�lawzdziewicz et al. (2000) and Vlahovska et al. (2005). Combining
(C 27) and (C 28) yields

W±,F
jmqj2m2,k

= D±
jmqj2m22,k

+

k∑
n=1

D±
jmqj ′m′q ′,k−nNj ′′m′′q ′′,nCq ′q ′′(j ′j ′′j2)ζ (j ′ j ′′ j2 m′ m′′ m2, q

′ + q ′′),

(C 29)

where Njmq,n represents the nth term in the expansion of ∇f .
The surfactant evolution (3.6) requires evaluation of the divergence of the product of

angular velocity and surfactant distribution. At the deformed interface, the tangential
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angular velocity introduced by (3.7) is expanded as

ũ (r s ) =
∑
p=0

εp ũp (Ω) . (C 30)

Inserting the surface velocity expansion (4.23) and expanding r−1
s in the Taylor series,

we obtain

ũp (Ω) =
(
c

±
jmq,p +

p∑
k=1

c
±
j ′m′q ′,p−kA

±
j ′m′q ′jmq,k ( f )

)
yjmq, q = 0, 1, (C 31)

where

A
±
jmqj2m2q2,k

=

k jmax∑
l=0

l∑
ml=−l

Φlml,kζ (j l j2 m ml m2, q + q1) Cq1q2
(j lj2)

k∑
n=0

(−1)k U±,(n)
qq1

(j ) .

(C 32)

The vector–scalar harmonics couplings in the product of the angular velocity (C 31)
and the surfactant concentration expansion in scalar harmonics (3.9) are recoupled
according to the formulae listed in Vlahovska et al. (2005). Taking the divergence of
the result, having in mind that the angular surface divergence of the tangential vector
harmonics yjm1 is identically zero, leads to

W
±,Γ
jmqj2m2,k

= D
±
jmqj2m20,k +

k∑
n=1

∑
j ′m′j ′′m′′

D
±
jmqj ′m′q ′,k−ngj ′′m′′q ′′,nCq ′q ′′

× (j ′j ′′j2)ζ (j ′ j ′′ j2 m′ m′′ m2, q
′ + q ′′). (C 33)

Appendix D. Perturbation solution: explicit expressions for velocity,
surfactant- and shape-evolution coefficients

Because of the linearity of the Stokes equations, the fluid flow can be decomposed
to a flow driven by interfacial stresses, and a disturbance flow due to a “blob” with
viscosity contrast but no interfacial stresses. Accordingly, the evolution coefficients
(3.8) can be split into contributions due to viscosity contrast, capillary and Marangoni
stresses

Fjm,p = SF
jm,p + Ca−1KF

jm,p + Ma MF
jm,p,

Gjm,p = SΓ
jm,p + Ca−1KΓ

jm,p + Ma MΓ
jm,p.

}
(D 1)

In the following subsections, explicit expressions for velocity, shape and surfactant
evolution coefficients for the perturbation order 1 are listed. The expressions for
orders 2 and 3 are very cumbersome and can be found in Vlahovska (2003).

D.1. Leading-order perturbation solution

The leading-order solution describes the distorting effect on shape and surfactant
distribution by the extensional component of the external flow.

The linear flow (4.20) can be decomposed into pure straining

c∞
2m0 = s

√
π

5
, c∞

2m2 = s

√
2π

15
, (D 2)



328 P. M. Vlahovska, J. B�lawzdziewicz and M. Loewenberg

and rigid body rotation

c∞
101 = ωi

√
2π

3
. (D 3)

Irrotational flows are characterized by ω = 0. The axisymmetric extensional flow
u∞ = (−1/2x, −1/2y, z) is specified by s =

√
6 and m = 0 . Simple shear flow

u∞ = (y, 0, 0) is given by ω = 1, m = ±2 and s = − sign(m)i. Hyperbolic flow
u∞ = (x, −y, 0) is given by m = ± 2 and s = 2.

The straining part of the external flow stretches the drop along the extensional
axis and convects the surfactant towards drop tips. These processes are described by
the leading-order terms, p = 0, in the evolution equation for shape and surfactant;
accordingly, the terms corresponding to relaxation driven by capillary Kjm,0 and
Marangoni stresses Mjm,0 are zero. The extensional part of the imposed flow (D 2)
is described by j = 2 harmonics, and thus only j = 2 harmonics are excited in the
disturbance flow field. After solving (4.31), taking into account (D 2) and (D 3) for
the expansion coefficients for the velocity and stress fields, we obtain

c+
2m0,0 = c−

2m0,0 + c∞
2m0,0 =

s

1 + 2χ

√
5π

c+
2m2,0 = c−

2m2,0 + c∞
2m2,0 =

s

1 + 2χ

√
10π

3

c+
101,0 = c−

101,0 + c∞
101,0 = ωi

√
2 π

3
.

(D 4)

The only non-zero terms in the evolution (D 1) are

SF
2m,0 =

s

1 + 2χ

√
10π

3
, SΓ

2m,0 = s

√
30π

1 + 2χ
. (D 5)

D.2. Order 1 perturbation solution

The order p = 1 solution describes the flow due to the deformed drop, i.e. the restoring
effect of interfacial stresses and drop rotation. The expressions are given in a general
form that can be applied for any external flow.

D.2.1. Velocity field generated by interfacial stresses

Capillary and Marangoni stresses drive fluid flow that opposes the shape and
surfactant distortion induced the external flow. At this order, capillary and Marangoni
velocities are continuous at the deformed interface, thus in equations (4.26), (4.38)
and (4.39)

vν
jmq,1 = 0 q = 0, 1, 2

w
±,F,ν
jm,1 = 0, w

±,Γ,ν
jm,1 = 0 ν = cap, mar.

}
(D 6)

After solving (4.31) for p = 1, we obtain that the capillary and Marangoni terms in
the velocity field are

c
±
jm0,1 = − [j (j + 1)]−1/2

(
Ca−1 KΓ

jm,1 + Ma MΓ
jm,1

)
,

c
±
jm1,1 = 0,

c
±
jm2,1 = Ca−1 KF

jm,1 + Ma MF
jm,1.

⎫⎪⎬
⎪⎭ (D 7)
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The capillary and Marangoni terms in the evolution (D 1) are

Kν
jm,1 = K̄ν

jm,1fjm,

Mν
jm,1 = M̄ν

jm,10fjm + M̄ν
jm,01gjm. ν = F, Γ.

}
(D 8)

For the shape-evolution equation, we have

K̄F
jm,1 = d (j ) (1 − j ) j (j + 1) (j + 2) (2j + 1) χ,

M̄F
jm,10 = d (j ) j (j + 1) (−6 + j (j − 1) (2j + 5) χ),

M̄F
jm,01 = d (j ) j (j + 1) (3 + (j − 1) χ).

⎫⎪⎬
⎪⎭ (D 9)

For the surfactant evolution equation, we obtain

K̄Γ
jm,1 = −d(j )3 (j − 1) j (j + 1) (j + 2) (−1 (j + 1) χ),

M̄Γ
jm,10 = −d(j )j (j + 1) (−3(−4 + j + j 2) + (j − 1) (j + 1) (7j + 12) χ),

M̄Γ
jm,01 = d(j )j (j + 1) (3 + (j − 1) (j + 1) (2j + 3) χ),

⎫⎪⎬
⎪⎭ (D 10)

where

d (j ) = [(3 + 2 (j − 1) (j + 1) χ)(−3 + (3 + 4j + 2j 2)χ)]−1. (D 11)

D.2.2. Velocity field due to viscosity contrast

A ‘blob’ with viscosity different than the suspending fluid introduces a disturbance
in the external flow. The radial component of the velocity ‘jump’ (4.26) for this velocity
field is zero, because the first derivative of the radial velocity is continuous. However,
there are tangential components due to contribution from the external flow u∞:

vjm0,1 = 2cζ0d (j ) χ (2, j1, j ) ,

vjm1,1 = −cζ1dc (j ) θ (2, j, j1) ,

vjm2,1 = 0.

(D 12)

The solution for the velocity field coefficients is

c−
jm0,1 = cζ0d (j ) (18(1 + j )(−1 + χ(j + 1))((χ − 1)χ (2, j1, j ) + 4j )

+ χ (2, j1, j ) (3 − χ(j + 1)(3 + j + 2j 2))

× (χ (2, j1, j ) + 2(−2 − 2j + χ(1 + 2j )))),

c−
jm1,1 = −cζ1dc (j ) θ (2, j1, j ) (−χ (2, j1, j ) + 2χ(1 − j )),

c−
jm2,1 = 3cζ2d (j ) [j (j + 1)]1/2 [4 + 4j − χ (2, j1, j )] (−χ (2, j1, j )

+ χ[χ (2, j1, j ) (1 + j ) + 2j (2j + 1))],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D 13)

where

cζq = fj1m1
ψ (j, j1, m, m1, q) (χ − 2)

√
5

2
[j (j + 1)]−1/2[1 + 2χ]−1. (D 14)

The denominator d (j ) is defined by (D 11) and

dc (j ) = [3 + (j − 1) χ]−1. (D 15)

The functions χ and θ are defined by (B 14) and (B 15). The flow function ψ describes
the coupling of the external flow, j = 2, and the shape modes of order j . For a simple
shear flow, the flow function ψ is

ψ (j, j1, m, m1, q) = s (ζ (2, j1, j, 2, m1, m, q) − ζ (2, j1, j, −2, m1, m, q)) , (D 16)



330 P. M. Vlahovska, J. B�lawzdziewicz and M. Loewenberg

and for the extensional flow

ψ (j, j1, m, m1, q) = sζ (2, j1, j, 2, 0, 0, 0, q) , (D 17)

where the coupling coefficient ζ is defined by (B 13). Note that if the viscosities of the
drop and suspending fluid are equal, i.e. χ = 2, the disturbance flow vanishes (D 14),
i.e. c

±
jmq,1 = 0.

We proceed next to evaluate the evolution coefficient S in (D 1). Using (D 4), we
obtain from (4.38) and (4.39):

wF,+
jm,1 = ωi

m1

2
δj12fj1m1

−
√

5

2

ψ (j, j1, m, m1, 2)

(1 + 2χ)
χ (1, j, j1) fj1m1

, (D 18)

wΓ,+
jm,1 = ωi

m1

2
δj12gj1m1

+

√
5

2

ψ (j, j1, m, m1, 2)

(1 + 2χ)
χ(1, j, j1)(−fj1m1

+ gj1m1
). (D 19)

Combining (D 18), (D 13) and (D 12) in (4.36), we obtain for term Sjm,1 in the shape
evolution

SF
jm,1 (j1m1) = ωi

m1

2
δj12fj1m1

+ fj1m1
d (j )

√
5

2
ψ (j, j1, m, m1, 2) [(1 + 2χ)]−1 (a0 + a1χ + a2χ

2), (D 20)

where

a0 = −3(−1 + j )(−18 + j (11 + 2(−1 + j )j ))

− 3j1(1 + j1)(−19 − 4(−1 + j )j + 2j1(1 + j1)) (D 21a)

a1 = 3(−1 + j )(−26 − 7j − 3j 2 + 93 + 2j 4)

− 3j1(1 + j1)
(
29 + 10j 2 + 4j 3 − 3j1 (j1 + 1) − 2j

(
−9 + j1 + j 2

1

))
(D 21b)

a2 = (−1 + j )(24 + 14j + 5j 2 + 6j 3 + 13j 4 + 4j 5) − j1 (j1 + 1) (3j1 (j + 1) (j1 + 1)

+ 2(−15 + j (−16 + j (−5 + j + 2j 2)))). (D 21c)

Likewise, inserting (D 19), (D 13) and (D 12) in (4.36), we obtain for the analogous
term in the surfactant evolution equation

SΓ
jm,1 (j1m1) = ωi

m1

2
δj12gj1m1

+

√
5

2
ψ (j, j1, m, m1, 0) [2χ + 1]−1

× [gj1m1
(6 + j (j + 1) − j1 (j1 + 1))

−fj1m1
d (j ) (−2 + j − j1)(−1 + j + j1)(χ − 2)(b0 + b1χ)], (D 22)

where

b0 = −3(1 + j )(6 + j ) + 3j1(1 + j1),

b1 = (1 + j )(18 + 27j + 16j 2 + 3j 3 + 2j 4) − (j + 1) (2j 2 + j + 3)j1 (j1 + 1) .

}
(D 23)

The first term on the right-hand side of equations (D 20) and (D 22) describes the
rotation of the deformed drop by the rotational component of external flow (D 3).
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Appendix E. Coefficients in the evolution equation
Here we list the explicit expressions for all coefficients in the evolution (5.3). The

coefficients and the evolution equations can be downloaded from Vlahovska (2007).

c1 =
1

2

√
15

2π
, (E 1)

D1 = − 40χ

(2χ + 1)(19χ − 3)
, (E 2)

D2 = −
24
(
137χ3 + 213χ2 − 96χ − 6

)√
5/π

7(2χ + 1)2(19χ − 3)2
, (E 3)

D3 = − 360χ

(10χ + 1)(17χ − 1)
, (E 4)

D4 =

√
1

15
D41 =

√
2

35
D42 = − 80χ(14χ2 − 249χ + 43)

21(2χ + 1)(10χ + 1)(17χ − 1)(19χ − 3)
√

π
, (E 5)

d11 =
5(4χ − 13)

7
√

6(2χ + 1)2
, (E 6)

d12 = −10(χ − 2)(13χ − 6)
√

30/π

7(2χ + 1)2(19χ − 3)
, (E 7)

d13 =

√
6

7
d22 = 2

√
15d36 = −

√
6

7
d37 =

20
√

2(43χ2 − 7χ + 17)

7(2χ + 1)2(19χ − 3)
, (E 8)

d21 = −10(χ − 2)(13χ − 6)
√

30/π

7(2χ + 1)2(19χ − 3)
, (E 9)

d31 = −
√

10π/3

2χ + 1
, (E 10)

d32 = − (2336χ3 − 22 396χ2 + 14 477χ − 933)
√

5/6π

98(2χ + 1)3(19χ − 3)
, (E 11)

d33 =
(2703χ2 − 647χ + 282)

√
10/3π

7(2χ + 1)2(19χ − 3)
, (E 12)

d34 = − (13 256χ3 − 43 816χ2 + 11 117χ + 4107)
√

5/6π

49(2χ + 1)3(19χ − 3)
, (E 13)

d41 =
2√
15

d61 = −
√

2

35
d71 = −

√
30

14χ + 7
, (E 14)

d42 =
60(χ − 2)(20χ − 1)

√
6/π

77(2χ + 1)2(10χ + 1)
, (E 15)

d43 = 3

√
10

7
d52 = 2d65 = −3

√
10

7
d73 =

15
√

10(4χ − 29)

77(20χ2 + 12χ + 1)
, (E 16)

d51 =
120(χ − 2)(29χ − 2)

√
10/π

539(2χ + 1)2(10χ + 1)
, (E 17)



332 P. M. Vlahovska, J. B�lawzdziewicz and M. Loewenberg

d62 =
45(χ − 2)(34χ − 5)

√
10/π

539(2χ + 1)2(10χ + 1)
, (E 18)

d63 =
30(χ − 2)

√
10/π

77(2χ + 1)(10χ + 1)
, (E 19)

d64 =
30(χ − 2)(130χ − 1)

√
10/π

539(2χ + 1)2(10χ + 1)
, (E 20)

d72 = −60(χ − 2)(24χ + 1)
√

15/7π

77(2χ + 1)2(10χ + 1)
. (E 21)

The above expressions can also be obtained from the relations in Appendix A.

D12 =
12(3χ − 1)

(2χ + 1)(19χ − 3)
, (E 22)

D13 =
2(χ + 3)

(2χ + 1)(19χ − 3)
, (E 23)

D21 =
3(χ + 3)(918χ2 − 197χ + 47)

√
5/π

7(2χ + 1)2(19χ − 3)2
, (E 24)

D22 =
2(181χ3 − 481χ2 − 123χ − 153)

√
5/π

7(2χ + 1)2(19χ − 3)2
, (E 25)

B12 =
12(13χ − 1)

(2χ + 1)(19χ − 3)
, (E 26)

B13 = − 6(7χ + 1)

(2χ + 1)(19χ − 3)
, (E 27)

B2 = −60(12χ3 + 217χ2 − 52χ + 15)
√

5/π

7(2χ + 1)2(19χ − 3)2
, (E 28)

B21 =
12(3χ − 1)

√
5/π

7(2χ + 1)(19χ − 3)
, (E 29)

B22 =
15(446χ3 + 1277χ2 − 580χ + 9)

√
5/π

7(2χ + 1)2(19χ − 3)2
, (E 30)

B23 = −3(2648χ3 + 1607χ2 − 1054χ − 129)
√

5/π

7(2χ + 1)2(19χ − 3)2
, (E 31)

B24 =
3(7χ + 1)

√
5/π

7(2χ + 1)(19χ − 3)
, (E 32)

b11 =
15

√
6(χ − 2)

7(2χ + 1)2
, (E 33)

b12 =
5
√

3/2

7(2χ + 1)
, (E 34)

b13 = −30(χ − 2)(23χ − 1)
√

30/π

7(2χ + 1)2(19χ − 3)
, (E 35)
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b14 =
15(χ − 2)

√
15/2π

49(2χ + 1)2
, (E 36)

b15 =
100

√
2(χ − 2)(17χ + 1)

7(2χ + 1)2(19χ − 3)
, (E 37)

b16 = b124/
√

3, b17 = b15

√
7/6, b18 = b16

√
7/6, (E 38)

b19 = b15/2
√

15 b20 = b16/2
√

15, (E 39)

b21 = −10(χ − 2)(2691χ2 + 751χ − 16)
√

30/π

49(2χ + 1)3(19χ − 3)
, (E 40)

b22 = −5
√

15/2π

2χ + 1
, (E 41)

b32 = −15(χ − 2)(296χ2 − 169χ + 29)
√

15/2π

49(2χ + 1)3(19χ − 3)
, (E 42)

b33 =
5(χ − 2)(183χ − 11)

√
30/π

7(2χ + 1)2(19χ − 3)
, (E 43)

b34 = −75(χ − 2)(188χ2 + 25χ + 3)
√

30/π

49(2χ + 1)3(19χ − 3)
. (E 44)

P12 =
40(26χ − 1)

3(10χ + 1)(17χ − 1)
, (E 45)

P13 =
20(χ + 1)

3(10χ + 1)(17χ − 1)
, (E 46)

Q1 = − 120(5χ − 1)

(10χ + 1)(17χ − 1)
, (E 47)

Q12 =
160(25χ − 2)

3(10χ + 1)(17χ − 1)
, (E 48)

Q13 = − 20(55χ + 1)

3(10χ + 1)(17χ − 1)
, (E 49)

P21 = P31/
√

15 = P41

√
2

35
= − 4(30χ3 + 2131χ2 − 570χ + 41)

7(2χ + 1)(10χ + 1)(17χ − 1)(19χ − 3)
√

π
, (E 50)

P22 = 2P32/
√

15 = P42

√
2

35
=

8(140χ3 + 417χ2 − 200χ + 27)

21(2χ + 1)(10χ + 1)(17χ − 1)(19χ − 3)
√

π
, (E 51)

Q2 = Q3/
√

15 = Q4

√
2

35
=

40(2045χ2 − 376χ + 27)

21(10χ + 1)(17χ − 1)(19χ − 3)
√

π
, (E 52)

Q21 = Q31/
√

15 = Q41

√
2

35
= − 40(1915χ2 − 424χ + 13)

7(10χ + 1)(17χ − 1)(19χ − 3)
√

π
, (E 53)

Q22 = 2Q32/
√

15 = Q42

√
2

35
= − 40(3χ − 1)

7(2χ + 1)(19χ − 3)
√

π
, (E 54)
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Q23 = 2Q33/
√

15 = Q43

√
2

35
=

10(25 970χ3 + 2589χ2 − 1712χ + 33)

21(2χ + 1)(10χ + 1)(17χ − 1)(19χ − 3)
√

π
, (E 55)

Q24 = Q34/
√

15 = Q44

√
2

35
= − 10(7χ + 1)

7(2χ + 1)(19χ − 3)
√

π
, (E 56)

d41 =
3

5
q1 = −q2

11

15
√

3
= −q411

√
2

105
= q7

2

5

√
3

5
= −q8

22

15
√

3
, (E 57)

where d41 is given by (E 14):

q3 =
150

√
10(χ − 2)

11(2χ + 1)(10χ + 1)
= q53

√
10

7
= 2q6 = −2

√
πq12

= −28
√

π

9
q14 = 7

√
πq15 = −14

√
π

5
q16 = 2

√
14π

3
q18, (E 58)

q9 = −b22

√
10π

63
, (E 59)

q10 = −30(χ − 2)(23χ − 1)
√

30/π

7(2χ + 1)2(19χ − 3)
, (E 60)

q11 = −15(χ − 2)
√

30/π

49(2χ + 1)2
= −

√
3

5
q13 = −

√
3

5
q17 =

3
√

2
7

5
q19 = −

√
3

5
q13. (E 61)

Appendix F. Stress coefficients
The coefficients in (5.7)–(5.9) are

τ0 =
5(χ − 2)

2χ + 1
, (F 1)

−7
√

5π

3
τ11 = −35

√
π

2
τ12 =

1

2

√
35π

2
τ13 = τ 2

0 , (F 2)

τ14 = τ 2
0

9(24χ − 13)

490(2χ + 1)π
, (F 3)

τ15 = −τ 2
0

41

35π
, (F 4)

τ16 = τ 2
0

3(212χ + 31)

245(2χ + 1)π
, (F 5)

τ21 =

√
15/2π

2χ + 1
, (F 6)

τ22 =
20

√
6(χ − 7)

7(2χ + 1)2π
, (F 7)

τ31 = −15
√

6(2χ − 29)

14(2χ + 1)2π
, (F 8)
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τ32 = − 15
√

6(χ + 3)

14(2χ + 1)2π
, (F 9)

n11 = −4(121χ + 38)

49(2χ + 1)π
τ 2

0 , (F 10)

n21 =
3
√

6

7π
τ 2

0 . (F 11)
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